Technical Report 32

CONCOMP

THE MAD/I MANUAL

=200 ™

Bruce J. Bolas n (o ?'5‘5

Allen L. Springer L NOV 19 1870 1)
Ronald J. Srodawa , : e

[T i

: , Ty
weprodued by M orOTe
/ . en (PY 4]
NAT'ONAL TECHN‘CAL _...-_-:""Ocument has be i
INFORMATION SERVICE This dh Leloase and gule; &
TGRS for pubbc _itod
distribution 13 upunat st

UNCLASSIFIED R

Security Classification
R

PR DOCUMENT CONTROL DATA-R& D
1 ‘&M“ g‘aa“ﬂrl“%n of :m.. body of gostract ard index‘n: conoraiion musr be unrer. . sacor (5e overall report is classified)
+ ORIGINATING ACTIVITY (Corporate author) 28, RPEBORY %c mfv 8|aqssxeCAT|oN
1T1
UNIVERSITY OF MICHIGAN Uncls s
CONCOMP PROJECT %. GROUP

3. REPORT TITLE

THE MAD/I MANUAL

&, DESCRIPTIVE NOTES (Type of report und inclusive cates)

Technical Report 32

S. AUTHORIS) (Firet name, middle initial, last name)

Bruce J. Bolas, Allen L. Springer, and Ronald J. Srodawa

ST REFORT DATE e, TOTAL NO. OF PAGES 5. NO. OF REFS
August 1970 184 0
;{8a. CONTRACT OR GRANT NO. fa, ORIGINATOR’S REPORT NUMBERIS)

DA-49-083 O0OSA-3050 Technical Report 32

b, PROJECT NO.

95. OTHER REPORT NOI(S) (Any other numbers that mp§ be assignad

Go this report)

d.

10. DISTRIBUTION STATEMENT

Qualified requesters may obtain copies of this report from DDC.

~

11 SUPBL_EMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Advanced Research Projects Agency

Dy
13, _ﬁvm% va =
Tt report contains the description of the MAD/I igpgaﬁ;e and

a user's guide for MAD/I in MTS (Michigan Terminal Syst¢€m).

The pre-defined MAD/I language, described in .this report, is
a procedure-oriented algebraic language designed for general-purpose
use. It is styled after such languages as ALGOL 60, MAD, and PL/I.
MAD/I is also intended as a convenient "base" language for extension
by a definitional facility. The language anticipates the definition
(or re-definition) of: data types and structures, statements, oper-
ators and operations. The definitional facility itself is not de-
scribed.

Tha user's guide shows how to compile and run MAD/I programs
in MTS. Sample runs are included. There is also a description of
a compiler feature which allows assembler code for the IBM 360 to
be compiled within a MAD/I program.

N

DDT"&":‘.51473 Unclassified

Security Classification

Unclassified

urity ssification S
LS _ ‘ LINK A INK D
KEY WORDS ROLE wT ROLE wT ‘ROL WY

MAD/I1

programming languages
extensible languages
compilers

Security Classification

T HE UNIVERSITY O F MICHIGAN

Technical Report 32

THE MAD/I MANUAL

Bruce J. Bolas
Allen L. Springer

Ronald J. Srodawva

CONCOMP: Research in Conversational Use of Computers
F.H. Westervelt, Project Director
ORA Project 07449

supported by:

ADVANCED RESEARCH PROJECTS AGENCY
DEPARTMENT OF DEFENSE
WASHINGTON, D.C.

CONTRACT NO. DA-49-083 OSA-3050y/

ARP® Order No. 716

administered through:

OFFICE OF RESEARCH ADMINISTRATION, ANN ARBOR

August 1970

2 Preface

Preface

We use the term "MAD/I" to refer to any of four different
things:

e The MAD/I Project -- a research project conducted at the
University of Michigan Computing Center, and Jjointly
sponsored by the Computing Center and the University's
CONCOMP Project. (CONCOMP: Research in Conversaticnal Use
of Computers. Supported by the Advanced Research Projects
Agency, Department of Defense, Washington, D.C.)

e The MAD/I_ Facility -- a flexible translator-building facility
which runs on the IBM System/360 computer. Created for the
purpose of building the MAD/I Compiler, the MAD/I Facility
provides for:

(a) The definition of a user-specified programring
lanquage, subject to some constraints on lexicon,
syntax, and interpretation sequence.

(b) The specification in detail of a translation process
for the defined language, using the MAD/I Facility as
a "skeleton" for the translator.

(c) The amalgamation of the translation specification with
the skeleton, to produce a complete translator for the
defined language. In general, the resulting
translator runs on the IBM 360, and directly produces
object modules for the 360. The translator (and hence
the lanquage) can be modified ("extended") at compile
time, producing an "extensible-language" effect.

e The _MAD/I__lanquage -- a particular procedure-oriented
algebraic 1lanquage, designed for implementation on the
MAD/I Facility. The MAD/I Language 1is intended to be
useful both as a general-purpose language, and also as a
convenient base or "core" language for extension into
various dialects.

e The MAD/I Compiler -- a compiler for the MAD/I Language,
implemented in the MAD/I Facility. To date, the only
version of the MAD/I Compiler runs in MTS (Michigan
Terminal Sysiem) and produces object modules for MTS.

This manual is the user's manual tor the MAD/I Language and
the MAD/I Compiler. It 1is interded as a reference manual
(rather than a teaching manual), and assumes that the reader is
already familiar with languages such as PL/I. The MAD/I
Langquage is described in Part I of this manual, and the Compiler

The MAD/I Manual

;‘

—— =

9-!7 H ’-'

e

R e e S I

oo

| gt

Joms et et P e e b

'y

Preface 3

is described in Part II. There are also three appendices. The
reader is urged to read Section 1 (Introduction to the Language)
and Appendix A (Syntax Description Notation) first.

For further reference on MAD/I:

D. L. Mills, "The Syntactic Structure of MAD/I", CONCOCME
Technical Report 7, June 1968.

(Presents a formal syntactic description of an earlier
version of the MAD/I Language; also describes the
novel precedence-oriented parsing technique built iato
the MAD/I Facility.)

Allen L. Springer, "Defaults and Block Structure in the
MAD/I Language", CONCOMP Memorandum 31, July 1970.

Ronald J. Srodawa, "An Example Definitional Facility in
MAD/I", CONCCMP Memorandum 32, July 1970.

The work presented here is the result of the combined
efforts of a number of people at the University of Michigan
Computing Center, working at various times over a period of five
years. The principal contributors are acknowledged below.

Professors Bruce W. Arden and Bernard A. Galler were the
project co-ordinators. They participated in the design of the
language, and wrote and edited earlier versions of the manual.

Most of the design work, and all of the programming and
debugging are due to:

Bruce J. Boias
Charles F. Engle
David L. Mills
Allen L. Springer
Ronald J. Srodawa
Fred G. Swartz

Finally, we should like to express our appreciation to
Professors Robert C. F. Bartels (Director of the Computing
Center) and Franklin H. Westervelt (Director of the CONCOMP
Project), who have supported, encouraged, and sometimes prodded
the MAD/I effort since its inception.

The MAD/I Manual

4 Table of Contents

Table of Contents

INTRODUCTION

PART I -- DESCRIPTION OF THE MAD/I LANGUAGE

1. Introduction to the Language
1.1 General Features
1.2 Introductory Examples

2. Symbols, Comments, and Spaces (Lexical Structure)

2.0 Introduction

2.1 TFormation of Symbols (Lexical Classes)
2.1.1 Alphanumeric Symbols

«2 Primed Symbols

Dotted Symbols

uoted Symbols

.1 Character Symbols

.2 Hexadecimal Symbols

.3 Pointer-Constant Symbols

.4 Entry-Name-Constant Symbols

® o o o P~ %]

.5 Unsigned-Integer Symbols

.6 Unsigned-Floating-Point Symbols
.7 Special Symbols
.8
.9
.1

At-sign Symbols

2.2 Usage of Symbols (Usage Classes)
2.2.1 Identifiers
2.2.1.1 Vvariables
2.2.1.2 Labels

2.2.2 Constants
2.2.3 Keywords
2.2.4 Operators
2.2.5 Component Names

2.3 Comments and Spaces

The MAD/I Manual

Percent Symbols (Internal Compiler Symbols)

0 Pound Symbols (Compile-Time Symbols)

v

ety e s et B i,

iy

-

e

= e e b b b bed e b e e e bae Gam e GNP Py

Table of Contents

Attributes

3.0 Introduction

3.1 Mode Attributes
3.1.7 Primitive Modes

3.1.7.1 'YINTEGER SHORT' Mode
3.1.1.2 'INTEGER LONG' Mode
3.1.1.3 'FLOATING SHORT' ode
3.1.1.4 °'FLOATING LONG' liode
3.1.1.5 'PACKED*' Mode
3.1.1.6 'BIT' Mode
3.1.1.7 'EOOLEAN' Mode
3.1.1.8 'CHARACTER' Mode
3.1.1.9 'VARYING CHARACTER' Mode
3.1.1.10 *'FILE NAME' Mode
3.7.1.11 *TRANSFER POINT' Mode
3.1.2 Structured Modes
3.1.2.1 Array Modes
3.1.2.1.1 'FIXEDL ARRAY' Mode
3.1.2.1.2 'VARYING ARRAY' Mode
3.1.2.2 'COMPONENT STRUCTURE' Mode
3.17.2.3 'ALTERNATE®' Mode
3.1.2.4 'POINTER' Mode
3.1.2.5 " 'ENTRY POINT' Mode
3.1.2.6 *ENTRY NAME!' Mode
3.2 torage Layout Attributes
3.2.1 Length Attribute
3.2.2 Alignment Attribute
3.2.3 Dimeunsion Attribute
3.3 cope Attributes
3.4 torage Class Attributes
3.4.1 sStatic Storage Class
3.4.2 Automatic Storage Class
3.4.3 Based Storage Class
3.4.4 Formal Parameter Storage Cliass
3.5 ttribute Assignment -- Introduction
3.6 xplicit Declarations

1 The 'DECLARE' Statement Fornm

2 Inverted Declaration Statement Form
3 o-Expressions

rmplicit Declarations

1 Contextual Declarations

2 Default Declarations

tributes of Constants

1 Unsigned-Integer Symbols

2 Unsigned-Floating-Point Symbols
3

4

t

W

.

[+ <]

“w oW

e o
cte o B e o

Character Symbols
Hexadecimal Symbols
ributes of Expressions

L
OO Iy Hoogm» ssEssfLLDDLWM

ww W w
.

3.9

The MAD/I Manual

Table of Contents

4. Expressions

4.0 Basic Concepts

4.1 Primitive Fxpressions

b,2 perations
1 Arithmetic Operations
2 Relational Operations
3 Boolean Operations
4 Bit-String Operations
5 Character-string Operations
6 Selection QOperations
7
8
9
1

Procedure-Call Operations
Conversion Operations
Assignment Operations

0 Other Operations

erator Precedence and Class

yntax of Expressions

EFFfeosErEFESR
L]

0
2
2
2
2
2
2
2
2
2
2
0]
S

5. Statements
Introduction
Exvression Statements
'GO TO' Statement
IF' Statement
'FOR' Statement
'*FOR VALUES' Statement
*VALUE®' Statement
Procedures
5«7.1 Procedure Definition
5.7.2 Formal Parameters
5.7.3 Procedure Returns
5.8 1Input/Output Statements
5.9 Declaration Statements
5.10 *BEGIN' and *'BLOCK' Statements
5.11 'PRESET' Statement
5«12 'YDECLARE CSECT' and 'DECLARE PSECT®* Statements
5.13 'ALLOCATE' and 'DEALLOCATE!'! Statements
S.14 *REDIMENSION' Statement

® ¢ o o
SN OONEWN 20

aumuonunoaunn

6. Input/Output
6.1 Data Sets, Records, and Files
6.2 Types of Input/Output Activities
6.2.1 Data-directed Transmission
6.2.2 List-directed Transmission
6.2.3 Format-directed Transmission
6.2.4 Unconverted Transmission
ociating Data Sets with Files
Unit Specification
Data Set Name Specification

6.3 S
1
2
3 Character-string Specification
4
5

S

Entry-name Specification
Default Specification

A
3
3
3
3
3

aooo o
L3

The MAD/I Manual

- a

 Srma

I = 2= e

Table of Contents

ile Attributes
.1 Data Set Associated with the File
.2 End-of-file File Attribute
3 End-of-volume File Attribute
.4 Error File Attribute
5 Maximum-length File Attribute
6 Echo File Attribute
scellaneous Input/Output Specifications
1 PFormat Specification
2 Line Specification
.3 Last-line Specification
«5.4 Last-length Specification
6.6 Input/Output Specification Summary
6.7 Data-Lists
«7.1 Block Elements
Array Expressions
Component-structure Expressions
Unsupported Modes
Embedded Statements
tax of the Input/Output Statements
ut/Output Statements
Pile Specification ('OPEN' and *CLOSE')
Data-directed 1/0
List-directed 1,0
Format-directed 1/0
Unconverted 1,0

G\.OO\G\G\
L]
WOWWOWOWOHWMNNYN

L]

e o o T ng e o
MEWNa2TDPDUBEWN

NI
e o o
o o

7.

8.

9.
10.

Program Structure

7.1
7.2
7.3

Block Structure
Scope of Names
Block Structure at Run Time

Compile-Time Facilities

8.1
8.2

‘SUBSTITUTE' Statement
INCLUDE' Form

Definitional Facility

Example MAD/I Programs

10.1

Procedures CALLSQRT and SQ&T

10.2 Procedures HASHTEST and HASH

PART II -- USER'S GUILCE FOR MAD/I IN NTS

11. The Compiler in Public File *MAD1
12. Sample Runs of MAD/I in NMTS
12.1 Sample Run of CALLSQRT and SQRT

The MAD/I Manual

Table of Contents

12.2 Sample Run of HASHTEST and HASH
12.3 Sample Run of Combined CALLSQRT and SQRT

13. Error Messages
13.1 Compile-Time Error Messages
13.2 Run-Time Error Messages

i4. Object Module Cescription
14.1 Representation of Data
14.2 Control Section Usage
14.3 Register Usage
14.4 Program lLinkage Conventions
14.5 Support Routines

15. Assembler Coding Feature
15.17 'ENTEP ASSEMBLER CODE®' Statement

15. 1.1

15.1.2

Declarations
Assembler Code Format

15.2 1Interface Conventions

15.2.1
15. 2.2

Entry into the 'ENTER ASSEMELER CODE* Statement
Exit from the 'ENTER ASSEMBLER CODE*' Staterment

5.3 Examples

15.3.1
15.3.2
15.3.3
15.3.4
15.3.5
15.3.6

APPENDICES

Appendix R --
Appendix B --
Appendix C --

Generating a Standard 0S Type (I) S Call
Generating a Standard 0S Type (I) R Call
Translating Lower-case Characters to Upper Case
Converting an Integer to Hexadecimal Characters
Moving an Arbitrary Number of Characters
Reading into a 'VARYING CHARACTER' Variable

Syntax Description Notation
Summary of Pre-defined Symbols
Current Restirictions and Possible Extensions

The MAD/I Manual

a

[

&4

.4

L

se

Introduction 9

INTRODUCTION

MAD/I was originally conceived in 1965 at the University of
Michigan Computing Center as a relatively simple carry-over of
the MAD 1language from the 1IBM 70390 computer to the IBM
System/36C, with perhaps a few straightforward extensions. This
goal, however, was later considerably revised. (For information
on the MAD language, refer to: "The Michigan Algorithm Decoder",
Revised Edition, 1966 (out of print); also see: B. W. Arden,
B. A. Galler, and R. M. Graham, "The MAD Definition Facility",

Compynjcations of the ACM 12,8 (August 1969), 432-439.)

The CONCOMP Project was formed in December, 1965, to do
extensive research in the <conversational use of computers.
CONCOMP needed a general-purpose language suitable for writing
conversational programs, and also wanted facilities for defining
nevw data types, operations, and statements intc the language.
Therefore, CONCOMP strongly supported the development of an
extended MAD language which would serve these needs, and this
became the new gqoal of the language project. In these early
days, the language was known variously as "“MADE", "COMET", or
“MAD/360".

As work on the 1language and compiler progressed, it
gradually became apparent that it was not feasible to retain
useful compatibility with 7090 MAD. Also, the need for a
flexible definitional facility forced the re-examination of
tasic concepts about the structure of programming 1languages.
Eventually it was agreed that the MAD/I project was actually
developing a pnew 1language (and compiler), which would be
independent of MAD.

The goals of the MAD/I project were again re-defined. We
now wanted a lanquage-and-compiler system with the ftollowing
features:

(A) It should contain a pre-defined algebraic language, suitable
for conventional general-purpose use without any
definitions from the user.

(B) The lanquage should have a rather general syntax, so that a
variety of new statements and operators might be defined
into the same framework as the pre-defined constructs.

(C) It should contain a powerful definitional facility usable by
a moderately sophisticated programmer. This facility
should allow the user to modify the pre-defined language so
as to satisfy his special requirements. In particular, it
should allow the definition (or re-definition) of:

(1) Data structures and data types.

The MAD/I Manual

10 Introduction

(2) Statements (including declarations).

(3) Operators and operations, either in terms of existing
operations, or in terms of an assembler-like language
allowing access to the object machine instruction set,
at the user's option.

(D) The compiler should be reasonably fast, especially when the
program contains no new definitions.

(E) The compiled object program should be reasonably efficient,
although perhaps not highly optimized.

The earlier goal of compiling "conversational" programs Was seen
as primarily an operating system problen. This was nicely
fulfilled at Michigan by the development of MTS (Michigan
Terminal System), which also was partly supported by CONCOME.

The goals above have largely been fulfilled, with a few
exceptions. We will discuss them in order:

(A) The pre-defined MAD/I language is a useful general-purpose
language. It has a syntactic structure somewhat like ALGOL
60, but it includes many of the important features of MAD
and PL/I. The MAD/I Compiler has been working since late
1968, and is being used for practical system programming
work. Portions of the compiler itself have been written in
MAD/I.

(B) The syntax rules of MAD/I are sufficiently generai to allow
a large "space" of possible definitions. A great variety
of symbols, expressions, and statements is syntactically
possible.

(C) The definitional facility exists, but it is not complete.
The MAD/I language itself is impleaented using this "“MAD/I
Facility", and one can 1indeed define new data types,
statements, operators, etc. Unfortunately, this facility
is too "low-level", and cannot be used without consideratkle
study. A user-oriented facility is certainly feasible, but
this requires more rescearclk and development.

(D) The compiler is unfortunately not fast. It is 1large and
very slow, because it constantly re-interprets definitions.
With a little more work, the compiler could be speeded up
by a factor of at least four.

(E) The olject program now produced 1is reasonably efficient,

although rnot highlv optimized. Even better object code is
possible.

The MAD/I Manual

-

-

L

Section 1: Introduction to the Language 11

PAK1 I =-- DESCRIPTION OF THE MAD/I LANGUACE

Section_1: Introduction to the lLangquage

1.1 General Features

This section briefly mentions some of the principal
ccencepts and features of the MAD/I language.

Input Form

The language is defined in terms of a countinuous sequence
of characters, independent of card format or line boundaries.
The compiler accepts its input as a sequence of records (lines)
which may vary in length. This input is normally treated as
completely free-fora, and is broken into a sequence of symbols.
Blanks and comments may be used freely between symbols, but most
symbols cannot contain blanks.

Symbols

In MAD/I two concepts have been separated: the form of a
symbol (how it is compos2d of characters), and the usage of the
symbol (how it functions as a langquage element). Examples of
synbol forms (called "lexical classes") are:

Alphanumeric symbol (e.g., F A32 BETA)
Primed symbol (e.g., 'IF 'TRUE! 'END')
Quoted symbol (e.g., "CHAR-STRING" "001A4"X)

Unsigned-integer symbol (e.g., 4 003 5140)
Special syuwmbol {e.g., *+ : , () ==

The symbols may be used in any of several ways; example usage
classes are:

Identifier. Usually formed as an alphanumeric symbol, Lut
the primed symbol ‘'DEFAULT' is also a pre-defined
identifier.

Keyword. The pre-defined keywords are primed symbols. An
alphanumeric symbol (such as 1IF or BEGIN) could be
defined as a keyword, but then it could not also be
used as an identifier.

Part I -- Description of the MAD/I Llanguage

12 Section 1: Introductior to the Language

Constant. The symbols 307, 'TRUE', 18.4E3, and "P=**" are
all constant symbols.

Operator. The symbols + , = , .ABS. , .OR. , = , and **
are pre-defined operators.

Language items such as identifiers, constants, and
expressions have attributes. Example attributes are:

Mode (e.g., ‘'INTEGER', *CHARACTER', ' VARYING ARRAY',
'POINTER?)

Storage layout (e.g., Length, Alignment, Dimension)

Storage class (e.g., Static, Automatic, Based)
Attributes of an item may be explicitly declared either in a
declaration statement or by attaching a declaration to any
occurience of the item in the program. Declarations may appear
anywhere in the program, and in particular need not precede the
first occurrence of the item. There are also default attributes
for items which are not completely declared. The defaults to be
applied are themselves declarable.
Example declarations:

'INTEGER* I, K, N

"DECLARE' (ALPHA, BETA) 'FIXED ARRAY' (50,50) 'BOOLEAN'

I ("INTEGER') := N@('INTEGER') + 3

'DECLARE' 'DEFAULT* *FLOATING LONG'

EXpressions

A MAD/I expression is basically similar to an expressicn in
FORTRAN, MAD, ALGOL, or PL/I, but is slightly more general. The
four expressions

ALPHA , A ¢+ B , (X-Y)*Z , -XYZ
all have the usuial meanings 1in the pre-defined 1language.
However, the conventional concepts of "subscripted variable" and
"assignment sSstatement" are handled as expressions in MAD/I.
For examp.e, if ALPHA is an array name, then ALPHA is

considered a variable, but ALPHA(I) is not a variable; both

Part 1 -- Description of the MAD/I Langquage

P

on

-

e

-

"

Section 1: Introduction to the Language 13

ALPHA and ALPHA(I) , however, are expressions (called
"designators"). In "ALPHA(I)" the subscription operation is
implied by the context of the array name expression followed by
the 1left-parenthesis symhol; it is treated as a convenient wvay
of writing "“ALPHA .TAG. I", where .TAG. is the operator
denoting subscription.

result is the same as AA , except that the value of AA has Leen
set to the value of BB. We could compute the maximum value of
AA and BB with the statement:

'IF¢ (MAX := AA) < BB , MAX := BB

The concepts of ‘*“operator® and ‘"operation" have been
separated. For example, the special symbol + 1is pre-defined
as an infix operator which, in the <contexts of arithmetic
operands, denotes “additionv, Addition is a binary (i.e.,
dyadic) operation. The + operator could, hovwever, be defined
to mean something other than addition for other contexts.

MAD/I statements are roughly similar to those of ALGOL 60
and PL/I. There are five general statement classes: simple
statements, compound statements, prefix statements, list
statements, and declaration statements.

(1) Simple statements. A simple statement is either an
expression or a “statement keyword'" (reserved word)
follovwed by a fixed number of expressions.

A := BCD
'*GO TO' LABEL
'ALLOCATE' STRUCT, K*10

(2) Compound statements. A compound statement consists of a
sequence of statements, separated by semicolons, and
bracketed by a statement keyword and an "end keyword®".

'BEGIN' B := A; C := D 'END*

(3) Prefix statements. A prefix statement consists of a
"prefix® follovwed by a "scope®. The prefix consists of a
statement keyword followed by a fixed nupber of
expressions. The scope may consist either of one statement
(separated from the prefix by a comma), or of a sequence of
statements separated by semicolons and terminated by an end
keyword (separated from the prefix by a semicolon).

Part I -- Description of the MAD/I Language

14 Section 1: Introduction to the Language

'IF* A >0, B := A

‘IF' A >0 = D 'ENDIF!

(o <]
.

]
D
.o
(9]
.

'FOR' I:=1,1,I>N , G(I) := 0

*FOR' I:=1,1,I>N
:0;

G(I) : H(I) := 1 'ENDFOR®

(4) List statements. A list statement consists of a prefix
followed by a varying number of expressions.

‘READ* ('UNIT* 0), A, B, C
'PRESET' D 3= 1, F := 3.5, CH := nkx&n

(5) Declaration statements. These have two forms: the °'DECLARE'
statement and the "inverted" declaration statements, as

exempliified below.

"DECLARE' AA 'INTEGER', BB 'BOOLEAN',
CC 'COMPONENT STRUCTURE®' ('BIT' (8), 'BIT' (24))

'*DCL* (DD, EE, FF) *'FLOATING', GG 'ENTRY NAME'

'INTEGER' II, JJ, XX

*FIXED ARRAY' A1(5,10), A2(4,4,4)

Statements to be successively executed are written in
sequence, separated by semicolons. Emnpty statements are

permitted. A statement may be 1labeled with an identifier,
separated from the statement by a colon.

LBL:

[B =]

i =y

0;
Z(I) ~= 0, 'RETURN' I ;
I +

IF =
: 1 ; 'GO TO' LBL

Embedded_statements

Any statement (or sequence of statements) can be made to
produce a result, and can therefore be used as an expression
(it.e., "embedded" in an expression). The ‘'VALUE' prefix
statement is provided for this purpose. The prefix designates a
variable whose vilu: a4t the end of the statement is used as the
result of the statement. The *VALUE' statement is enclosed in
parentheses and used as an expression.

SUMSQUARE := ('VALUE' S ; S := 0 ; 'FCR' I:=1,1,IDN,
S

+ (X(I) - Y(I))#**2 'ENDVALUE')

Part I -- Description of tLe MAD/I Language

50
-—

-

——

Section 1: Introduction to the Language 15

Program_structure

MAD/I provides a "block structure"™ much like ALGOL 60 and
PL/I. Each block 1is either a "compound-statement block" or a
"procedure block". A compound-statement block has the fornm

"BLOCK® e e e 'END'

where the o e ¢ represents an arbitrary sequence of statements.
Procedure blocks have several variations; they typically look
either like

'PROCEDURE' NAME. (PAR1,PAR2) ;

YEND PROCEDURE?!
or like
"PROCEDURE®' FN. (X,Y) := expression

Both kinds ox blocks are statements, and can be used wherever a
statement is valid. Blocks, therefore, may be nested. Block
structure serves to delimit the scopes of declarations and
names. Each block may either have its own default attributes,
or may inherit the defaults of the enclosing block.

A MAC/I program is a block not contained in any other

block. Each source program 1is separately compiled intc its
object program.

Part I -- Description of the MAD/I Language

16 Section 1: Introduction to the Language

1.2__Introductory Examples

Let us suppose that X and Y are two arbitrary vectors in a
vector space of 3 dimensions, and that we want a procedure which
computes the Euclidean "distance" function between X and Y. The
following program does this; the line numbers at the left margin
are pot part of the progran.

01 'PROCEDURE' DIST. (X,Y)

02 'DCLY (X,Y) °'FIXED ARRAY' (3);

03 * INTEGER' I;

04 DIST: SUM := 0. 3

€5 *FOR' I := 1, 1, I> 3,

06 SUM := SUM « (X(I) - Y(I)) ** 2 ;
07 RETURN' SCRT. (SUNM)

08 'END PROCEDURE!

The program is a procedure block; the procedure statement
begins with the statement keyword 'PROCEDURE' and ends with the
end keyword 'END PROCEDURE' in line 08.

Line 01 consists of the procedure prefix followed by a
semicolon. The procedure prefix specifies that identifier DIST
names an entry point of the procedure, and that identifiers X
and Y are the formal parameters associated with that entry
point. Since the prefix is followzd by a semicolon, the rest of
the 'PROCEDURE' statement wiil be a sequence of statements
terminated by the end keyword *END PROCEDURE'.

Line 02 consists of a 'DECLARE' statement followed by a
semicolon. (*DECLARE' is abbreviated as 'DCL' -- many MAD/I
keywords have abbreviations.) The statement specifies that X
and Y are variables of 'FIXED ARRAY' mode, and that their values
are arrays of 3 components, numbered from 1 to 3. °'FIXED ARRAY'
means that the arrays have fixed dimensions; they cannot be re-
dimensioned at run time. Since the mode of the array components
is not explicitly declared, it is assumed to be the default
mode; since the block contains no declaration for default mode,
the pre-defined default of 'FLOATING SHORT' is used. Thus, the
values of X and Y are arrays of 3 flcating-point numbers. The
semicolon at t*the end of line 02 is not part of the 'DECLARE"
statement, but separates it from the next statement.

Line 03 contains a declaration statement which specifies
that I 1is a variable of ‘'INTEGER' mode. This is called an
"inverted" declaration statement, since it Dbegins with an
attribute keyword instead of 'DECLARE'.

Line O4 contains an "expression statement" labeled by the
identifier DIST; this is the entry point of the procedure. The
statement is an assignment expression, which sets the value of
variable SUXN to the floating-point value O. SUM 1is not

Part I -- Description of the MAD/I language

&

By gy

 Aat]

§scd

-

Section 1: Introduction to the Language 17

explicitly declared, so it has the default mode *FLOATING
SHORT!'.

Line 05 [*FOR* I :=1, 1, I > 3 ,] has the beginning of a
'FOR' statement, which specifies an iteration. The iteration
variable is I; it is initialized to 1, and is incremented by 1
until the expression I > 3 is true. Since the 'FOR' statement
prefix is followed by a comma, the scope of the iteration will
be a single statement.

Line 06 [SUM := SUM ¢ (X(I) - Y(I)) ** 2 ;] contains an
expression statement, which is the statement repeatedly
executed. The semicolon separates the 'FOR!' statement and the
'RETURN' statement. The assignment expression increments the
value of SUM Dby the square of the difference of the Ith
components of the two vectors.

Line 07 ['RETURN® SQRT. (SUM)] contains a *RETURN®
statement. It evaluates the expression SQRT. (SUM) and returns
the resulting value as the result of the DIST procedure. The
identifier SQRT is implicitly declared to be 'ENTRY POINT' mode
by its appearance as a procedure name in the procedure-call
expression; since SQRT is not a label in this program, it is
implicitly declared 'EXTERNAL' as well. Also, a procedure call
on SQRT is assumed to produce a result of default mode. This
program assumes that SQRT is an entry point of a (library)
subroutine that computes the square root of a "FLOATING SHORT®
value and returns a result of the same mode. MAD/I itself does
not have pre-defined procedures for the elementary functions.

Line 08 ['END PROCEDURE'] contains the 'END PROCEDURE®
keyword which ends the procedure (and the program). We could
also have used the general-purpose end keyword 'END' instead.
Notice that no semicolon is needed between the *'RETURN!
statement and the end keyword. Such a semicolon would do no
harm, however; it would merely introduce an empty statement
between the semicolon and the end keyword.

Part I -- Description of the MAD/I Language

18 Section 1: Introduction to the Language

As a second example, let us generalize the previous protlem
so that X and Y are vectors in a space of N dimensions, and that
N is supplied as an actual parameter (arqument) to the
procedure. We could then re-write DIST as follows:

01 *PROC* DIST. (N,X,Y);

02 *DCLY (I,N) *'I', (X,Y) 'FA'(#) 'FsSt,
03 SUM == 0;

04 *FOR' I:=1,1,I>N,

05 SUM := SUM + (X(I)-Y(I)) **2;

06 ! RETURN' SUM ** (0.5 'END!

Line 01 is the same as before, except that 'PROCEDURE!' is
abbreviated as 'PROC!', and N is added as a formal parameter.

Line 02 contains a single 'DECLARE' statement, which uses
abbreviations. It declares that I and N have 'INTEGER LCNG!
mode, and that X and Y have 'FIXED ARRAY' mode with *FLOATING
SHORT' components. The special symbol # specifies that the
array dimensions are to be obtained at run time from the actual
parameters supplied for X and Y.

Line 03 is similar to line 04 before, except that the label
DIST has been omitted, and the constant 0 has nc decimal point.
Since DIST is declared in the ©procedure prefix as an entry
point, but DIST does not appear as a label, the entry point is
considered to be at the first executable statement, which is
“SUM := 0". The constant 0 has 'INTEGER LONG' mode, and will be
converted to 'FLOATING SHORT' mode for assignment to SUM. The
MAD/I compiler reserves the "right" to perform such a conversion
at compile time. '

Line 04 [*'FOR' I:=1,1,I>N,] is the same as before, except
that the iteration proceeds until the value of I exceeds the
value of parameter N. If N is less than 1, then the iteration
scope is never executed.

Line 05 [SUM := SUM& (X(I)-Y(I))**2;] is the same as
before.

Line 76 [*RETURN' SUM ** 0.5 'END'] combines the
functions of lines 07 and 08 before. 1Instead of explicitly
calling a procedure SQRT, the MAD/I exponentiation operation is
used. The 'END' keyword ends the program.

Part I -~ Description of .ae NAD/I Language

Section 1: Introduction to the Language 19

As a third example, we will re-vwrite the generalized DIST
procedure to use an "embedded statement":

01 ' PROC* DIST. (N,X,Y);

02 'DCL* (I,N) *I*', (X,Y) °*FA* (%) 'FS';

03 DIST: *RETURN' (°'VALUK* SUM := 0. , 'FOR' I:=1,1,I>N,
04 SUM := SUM+ (X(I)-Y(I))*+2)**0.5 '"END'

Lines 01 and 02 are as before. Lines 03 and 04 contain a
labeled *RETURN' statement; the expression for the return value
contains a parenthesized ‘'VALUE®' statement. The 'VALUE®
statenent prefix specifies the variable SUM and sets it to zero;
the 'VALUE' statement scope is the 'FOR' statement, vhich is the
same as before; the result of the statement is the value of SUMN
after the scope is executed. The 'VALUE' statement is enclosed
in pareuntheses and its value raised to the 0.5 power. The 'END'
keyvord ends the program as before.

Part I -- Lescription of the MAD/I language

20 Section 2: Symbols, Cosments, and Spaces

2:0__Intyroduction

A source program in the MAD/I Language 1is a sequence of
characters -- 1letters, digits, blanks, and special characters.
A language processor must group successive characters together
into symbols, commepts, and gspaces, The resulting lexical
sequence of symbols constitutes the formal MAD/I program, and is
the only portion of the source program text that is of interest
to a compiler or interpreter. The comments, when included, are
solely for the <¢onvenience of human readers. Spaces serve to
separate symbols and comments; they have no other significance.

Because the MAD/I Facility is intended to be flexible, and
because the MAD/I lLanguage design must allow for "extension" by
th. user, the rules for focrming and recognizing symbols have
been Aivorced from the uses (interpretations) of the syatols.
Fcr ex .mple, in a typical "fixed"™ language, an identifier pmust
be: formed as an alphanumeric symbol; in MAD/I, however, the user
can cause almost any symbol (e.g., a string of characters
enclosed in quotation marks) to be treated as an identifier.
There are also default interpretations for some symbol forss;
for example, an alphanumeric symbol not otherwise declared is
treated as an identifier.

2.1__Formation of Symbols __(Lexjcal Classes)

The rules for grouping characters together into symbols are
embedded in the 1lexical scanner of the MAD/I Facility; hence,
they are fixed. The 1lexical scanner recognizes ten general
cateqories (lexical <classes) of symbols, which are listed here
and defined in detail below:

Alphanumeric symbols

Primed symbols

Dotted symbols

. Quoted symbols

. Unsigned-integer syambols

. Unsigned-floating-point syabols
. Special symbols

8. Percent symbols

9., At-sign symbols

10. Pcund symbols

SO UNE WN -

Part I -- Description of the MAD/I Language

[=)

e

.

Section 2: Syambols, Coamments, and Spaces 21

221.1 _Alphapumerjic Symbols

An alphanumeric symbol is a sequence of adjacent letters or
digits, the first of vhich must be a letter. The "letters" are
the upper-case characters A,B,...,2Z2, and the lover-case
characters a,b,...,z. (It should be understood that these are
52 different characters.) The "digits" are the characters
0,1,2,¢..,9. An alphanumeric symbol must hnave at least one
character, but no more than 256. Adjacent alphanumeric symbols
must be separated by spaces or comments.

Usual usage: Identifiers
Default interpretation: Identifier

Examples: MADI
) ¢
B90A2
LongerSymbolThanNost

2:1,2 Primed Symbols

A prised syabol is a sequence of 1 to 254 letters, digits,
or blanks, enclosed in "“primes" (apostrophes, single-quote
marks). All blanks between the primes are ignored, and are not
ccnsidered as spaces.

Usual usage: Keywvords, Constants

Examples: ‘IF*
‘GO TO' , same as 'GOTO'
* INTEGER®
'DEFAULT®
*TRUE?
'NULL PT°

2:1.3_Dotted Symbols

A dotted symbol is a sequence of 1 to 254 letters or
digits, the first tvo of which must be letters, enclosed in dots
(periods) . No blanks are permitted within a dotted symbol.

Usual usage: Operators
Examgles: o 3o

. LS.
«ASTYPEOF.

.qq 3.

Part I -- Description of the MAD/I Language

22 Section 2: Symbols, Comments, and Spaces

2:1:8__Qyoted Symbols

A quoted symbol is a sequence of zero or more characters
enclosed in quotation marks (double-quote magks). A gquoted
syabol can also include a suffix character (X, P, or E)
immnedjately after the closing quote (see below). Any
characters, including blanks and special characters, can be
written between the quotes; however, each occurrence of the
quote (") character must be represented by two adjacent quotes
(""). If a quoted symbol is followed by a symbol which begins
with a quote or letter, the two symbols must be separated by a
space (or comment). The four forms of quoted symbols are
described below:

2:1.4,1 _Character_ symbols
A character symbol is a quoted symbol which has no suffix.

Usual usage: Character-string constants
Default interpretation: Constant of 'CHARACTER' mode; see
Sec. 3.8.3.

Examples: nan
"** Error: iHC999 a 51."
nunw (contains one " character)

£21.4.2 Hexadecimal_ sSymbols

A hexadecimal symbol is a quoted symbol with the suffix
character X . The characters between the quotes are restricted
to the "hexadecimal digqits": 0,1,...,9,A,B,C,D,E,F.

Usual usage: Constants
Default interpretation: Constant of ‘'INTEGER LONG' mode; see
Sec. 3.8.4.

Examples: WAQE"X

WBAD" X
"2001940000"X

Part T -- Description of the MAD/I language

-

-e

pen

Section 2: Symbols, Comments, and Spaces 23

2.1.4.3 Pointer-Constant Symbols

A pointer-constant symbol 1is a quoted symbol with the
suffix character P . The characters between the gquotes
constitute another symbol -- the identifier whose storage
assignment will be "pcinted to".

Usual usage: Pointer constants
Examples: "ALPHA"E
"sI N"P

2:1.4.4 Entry-Name-Constant Symbols

An entry-name-constant symbol is a quoted symbol with the
suffix character E . The characters between the gquotes
constitute another symbol -- the identifier (label) of the entry
point to be "pointed to" by the entry-name constant.

Usual usage: Entry-name constants
Examples: “"LAB12"E
IISI N"E

2.1.5__Unsigned-Integer_ Symbols

An unsigned-integer symbol is a sequence of decimal digits,
and is considered to be the usual decimal representation of a
non-negative integer. Leading zeros are permitted, but comnas
and decimal points are not.

Usual usage: Integer constants
Default interpretation: Constant of 'INTEGER LONG' mode; see
SeC. 3.8.1.

Examples: 38
0
00190

2.1.6__Unsigned-Floating-Point_Symbols

An unsigned-floating-point symbol is a sequence of decimal
digits, with either a single decimal point, or an "exponent
part", or both. If the decimal point is written, it may be
placed anywhere in the sequence of digits, and is interpreted
according to the usual rules of decimal notation. The decimal
sequence may be suffixed by an "exponent part", which represents
a multiplier value applied to the decimal number. The exponent
part consists of the character E followed by a decimal

Part I -- Description of the MAD/I language

24 Section 2: Symbols, Comments, and Spaces

integer, and represents a multiplier equal to 10 raised to the
power of the decimal integer. The decimal integer may be
signed.

Usual usage: Floating-Foint constants
Default interpretation: Constant of *'FLOATING SHORT' mode; see

Sec. 3.8.2.

Examples: 1.57
0.
.1
0.005
10E3 (
T 2.2E-07 (
.OUE+U8 (

10 x 103 = 10¢)
2.2 x 107)
.04 x 1048)

2_1_10 7 SQeCial S!ﬂbOls

The following special symbols are pre-defined in MAD/I;
they all have pre-defined interpretations as punctuation marks
and operators:

left-parenthesis
right-parenthesis

comma

semicolon

colon

ellipsis

pound-sign, number-sign

E Y RTINS s

plus

minus

asterisk

slash

at-sign

dot, period

dollar-sign

not-sign

ampersand

vertical bar
eqial-sign, "equals"
less than

greater than
double-asterisk, pover
colon-equals, assignment, 'gets"
not equal

less than or equal
greater than or equal
double-bar, concatenate

DN # 1 +

= VAJ ‘" VAl =—=O") ar

== 0 i nn x

part I -- Description of the MAD/I Language

“w

- >

-

-

-

-

m———-

Section 2: Symbols, Comments, and Spaces 25

2,1,8 Perceat _Symbols

A percent symbol is a percent-sign immediately followed by
a non-empty sequence of letters and digits. Percent symbols are
used extensively in MAD/I as 1internal compiler symkols.
Compiler-generated identifiers (such as the names of temporary
results) are percent symbols. The programmer should avoid
writing percent symbols unless he is deliberately using the low-
level MAD/I Facility.

Examples: %#TMP0O0O7
%A
%MACRO

An at-siqn symbol is an at-sign followed by a non-emfpty
sequence of 1letters and digits. At-sign symbols, like percent
symbols, are used in MAD/I for internal compiler symbols. They
are also used as component names (see Sec. 2.2.5). The
programmer should avoid writing at-sign symbols unless he is
writing a component name or deliberately using the low-level
Facility. (Note: the single character @ 1is a gpecial symtktol,
and is not classed as an at-sign symbol.)

Examples: oCLS

DEX2
@MODE

2.1.10__pound_Symbols

A pound symbol is a pound-sign followed by a non-empty
sequence of letters and digits. Pound symbols are intended for
use in the Compile-Time Facility, and are reserved as a class
for that purpose. (Note: the single character # 1is a special
symbol, and is not classed as a pound symbol.)

Examples: #COUNT

#L12
#ROWS

Part I -- Description of the MAD/I language

26 . Section 2: Symbols, Comments, and Spaces

2.2__Usage_of_Symbols (Usage_Classes)

Except for internal compiler symbols and special synmtols
which are punctuation marks, the MAD/I . symbols can be
categorized into five general usage classes, which are 1listed
here and discussed in detail below:

1. Identifiers

2. Constants

3. Keywords

4, Operators

5. Component names

2.2.,1__Identifiers

An identifier is a symbol used as a name of some data
object such as an integer value, a pointer value, or a portion
of a program. There are two kinds of identifiers: yvarjables and
labels.

There is also a special pre~defined identifier, the primed
symbol 'DEFAULT'. This appears only in declaration statements,
and is used as a controllable "prototype" for the assignment of
default attributes (see Section 3).

2.2.1.1__Variables

A variable is an identifier used to name a data object (its
"value"). The essence of a variable is that the particular data
object named is not fixed, but may vary when the object progranm
is executed ("run time"). For example, if the symbol K is a
variable, it might (at run time) name first an integer value 15,
and later an integer value -77, and still later an integer value
0 . A variable can also name a structured set of values, such
as an array of floating-point values.

We remind the reader that computing machines do not
manipulate abstract objects, such as numbers, directly. Rather,
machines must manipulate concrete representations of such
objects. Thus, when we say that the variable K names the
integer value 15, we always mean that K names a finite
representation of the integer 15, and that this representation
is the value of K. With this distinction understood, we may say
loosely that “K has the value 15", and hope there will ke no

confusion.

The -~omputational properties of each variable are
represented by the attributes assigned to the variable. An

example attribute in MAD/I is m§gg‘ which characterizes both the
range of values the variable can name, and the form of a tyfpical

Part I -- Description of the MAD/I language

.-

-

.

-

Section 2: Symbols, Comments, and Spaces 27

value. For example, a variable of 'INTEGER LONG' mode can only
name values which are integers encoded (in System/360) as
fullword (32-bit) fixed-point binary numbers. Another exanmfple
mode is 'FIXED ARRAY', which specifies that the variable names
an array of values, that the bounds on each dimension of the
array are fixed, that all the values in the array are of the
same mode, and that the values are located at regqularly-spaced
intervals in computer storage. In this case an individual value
is designated by writing subscripts after the variable. For
example, if AR is a variable of 'FIXED ARRAY' mode, then a value
in the array may be designated by an expression such as AR(1) .
Note: AR(1) 1is not a variable, but is an expression called a

A label is an identifier that names a fjxed object. Unlike
a variable, the value of a label cannot change at run time;
thus, a label is a kind of constant. Labels are wused only to
name statements in programs; each label is written in front of
the statement it names, separated from the statement by a colon
(:) . In the pre-defined language, there are only two modes a
label can have: 'TRANSFER POINT' mode and ‘'ENTRY POINT' mode
(see Section 3).

Part I -- Description of the MAD/I lLanguage

28 Section 2: Symbols, Comments, and Spaces

2:2:2 _Constants

A constant is a symbol (or @d-expression -- see below) which
denotes a fixed value. The value of each constant is computed
in advance of run time, and may or may not be explicitly
represented in the object module. A constant may have either of
tvo fornms:

{1) A single "constant symbol",

Examples: 419
*TRUE!

(2) A constant followed by the @ symbol followed by
a parenthesized declaration; i.es, an a-
expression whose left operand is a constant.

Examples: 419@ (*INTEGER SHORT!')
"Y4EQ00000"Xd (*FLOATING SHORT!)
“ABC"3d ("CHARACTER® (8))@ (*ALIGN" (8))

The pre-defined constant symbols include:

Unsigned-integer symbols (5ec. 2.1:9)
Unsigned-flcating-point symbols (Secse 2:1.6)
Character symbols (Sece 2.1.4.1)
Hexadecimal symbols (Sec. 2.1.4.2)
Pointer-constant symbols (Sec. 2+1.4.3)
Entry-name-constant symbols (Sec. 2.1.4.4)

The Boolean constants 'TRUE' and 'FALSE!
The character constant *NULL C'

The varying-character constant *NULL VC!
The pointer constant 'NULL PT!

The entry-name constant *NULL EN!

The reader will note that signed constants have not been
mentioned. The application of a + or - prefix symbol to a
constant results in an expression which is not called a
"constant", although it is constant-valued.

part I -- Description of the MAD/I Language

e

-

Section 2: Symbols, Comments, and Spaces 29

2:2.3__Keywords

A keyword is a symbol which has been assigned a particular
use in a MAL/I statement form. All keywords, both pre-defined
and user-defined, are reserved symbols. The pre-defined
keywords are all primed symbols, and can be roughly divided into
four informal categories: statement keywords, end keywords,
phrase keywords, and attribute keyvwords.

Statement keywords are those which begin and identify a
statement form. Each occurrence of a statement keyvword is
considered to begin a statement of the form identified by the
keyvword (see Section 5).

Examples: *PROCEDURE?
IIFI
'FOR!
'GO TO!

End_keywords are those which end statements. An end
keyvword is part of the statement it ends, and is the last symbol
of the statement (see Section 5).

Examples: *END?
'END PROCEDURE!
'*ENDIF'

Phrase_keywords are those which separate expressions, or
identify optional expressions, within a larger statement
context. Some phrase keywords are used 1like commas -- to
separate expressions. Others are prefix keywords which combine
with an expression tc form a larger expression (see Section 5}.

Examples: 'WITH?
'TOI
*END OF FILE!
*SAVE CODE!

Attribute keywords are those which represent attributes,
such as mode and storage class, and are used to declare the
attributes of identifiers and expressions. Attribute keywords
normally appear as suffix or infix keywords within declarations,
but they c¢an also function as statement keywords in the
"inverted" declaration form (see Sections 3 and 5.9).

Examples: 'FLOATING LONG'
*ENTRY POINT!
*NOT NEW!
*EXTERNAL'?

Part I -- Description of the MAD/I Language

30 Section 2: Symbols, Comments, and Spaces

An operator is a symbol which denotes an operation on data
objects. The same operator may denote a number of different
operations; the appropriate operation for each occurrence of the
operator is determined by the context of that occurrence.

Each occurrence of an operator has one or two adjoining
expressions which denote the operands (data objects) of that
occurrence. Each operator is in exactly one of four syntactic
categories:

A prefix operator is vwritten Dbefore its operand
expression.

A postfix operator is written after its operand

expression.

AL infix-left operator is written between its operand
expressions; infix-left operators of equal
precedence associate left-to-right (see Section
4).

An infix-right operator is written bpetween its operand
expressions; infix-right operators of egqual
precedence associate right-to-left.

Note; In order to preserve both the above distinction and
traditional notation, two pre-defined symbols get
special treatment: Whenever the minus (-) synmbol
appears in the context of a prefix operator, it is
transformed to the negation (. NEG.) operator.
Wwhenever the plus (¢) symbol appears in the context of
a prefix operator, it is dropped and ignored. Thus,
the plus and minus signs retain their usual dual
roles.

All pre-defined operators are either special sysmbols or
dot ted symbols. They and their associated pre-defined
operations are discussed in Section 4.

Examples: + (infix-left)
- (prefix)
i = (infix-right)
.ABS. (prefix)
.REN., (infix-left)

Part I -- Description of the MAD/I language

=4 =i =d OGu¢ GEC D S o

s

Section 2: Symbols, Comments, and Spaces 31

2:2,5__Copponent Nages

A component name is a symbol used to name (or label) a
component of a structured data object. All component names are
established at compile time, through their use in declarations
nf structured variables.

For example, the declaration statesment
DCL CHMPLXN °'CS' (@REAL 'FS', @IMAG °'PS')

declares that CMPLXN is a variable of 'COMPONENT STRUCTURE' mod=
(see Sec. 3.1.2.2) with tvo components; each component has
*FLOATING SHORT' mode. Also, the syabols ?2REAL and d@IMAG are
declared to be component names, vhich name (for the variable
CMPLXN) the first and second components respectively. The first
component of CHMPLXN can then be designated by the expression
CHMPLXN $ @REAL , and the second component by CMPLXN $ AIMAG .

The same cosponent pname can be used for different
structured variables, and can name different components of those
variables.

The compiler currently requires that all component names
must be at-sign sysbols, in order to distinguish them from
identifiers. This restriction may be relaxed in the future.
Also, the compiler presently allows component names which are
at-sign symbols to be written like ordinary subscripts; e.g.,
CHPLXN (?REAL) and CMPLXN(@INMAG).

Part I -- Description of the MAD/I lLanguage

32 Section 2: Symbols, Comments, and Spaces

2.3__Comments_apd_sSpaces

Any source program text may be enclosed in "“cosmsent
delimiters® to form a comment, Comment delimiters are the
character pairs << and >> . Thus, the followvwing is a comment:

<<THIS IS A COMMENT.>>

Once a left comment delimiter (<<) is recognized, all characters
after it are considered part of the comsent until the first
right comment delimiter (>>) occurs. Comments Bpust not be
nested. Comments @may be inserted at any point in the text of
the program except within symbols. They are bypassed in the
initial scan of the text, and they have no effect on the okject
program.

Spaces are segquences of one or more adjacent klank
characters which are not embedded within a symbol or coasent.
Spaces are significant in that they will separate syabols vwhich
would otherwise "run together". Blank characters wvwithin a
primed symbol, a quoted symbol, or a comment are legal and are
not considered as spaces; blanks cannot be embedded in any other

symbols.

part 1 -- Description of the MAD/I Lanquage

[35

s

-

-

Section 3: Attributes 33

Section_3; Attributes

3.0__Introduction to Attributes

Attributes are simply "significant properties". That 1is,
the attributes of an item in a MAD/I program are those
properties of the item which are of interest to the 1language
processor (beyond the purely syntactic properties, which are not
considered attributes). Attributes must be determined by the
language processor, at "“compile time", in order to produce a
correct translation of the progran. The "items" for which
attributes are defined include identifiers, constants, and
expressions, as follows:

Each jdentifjer has attributes that characterize the values
that it names and the scope of the identifier itself. Every
identifier acquires the following attributes:

A mode, which specifies both the possible values of
the identifier and the representation form of a
value. The mode may be either a primitive mode
or a structured mode. A primitive mode (such as
YBOOLFAN' mode) describes a relatively sirple
data object and requires no other mode for its
def inition. A structured mode (such as
*COMPONENT STRUCTURE' mnode) describes a
*structured® object which has components (or
produces results) which have their own modes.

A scope, which is that portion of the program over
which the identifier 'is uniquely "defined"; i.e.,
that portion in which another occurrence of the
same symbol 1s another occurrence of the sanme
identifier.

A storage class, vhich specifies the manner in which
storage is associated with the identifier.

If the identifier is a variable, then it also acquires at least
two "storage layout" attributes:

A length, which specifies the amount of storage
(number of bytes) required for a value.

An aljgnment (alignment factor), which specifies a
constraint on the position (in storage) of the
storage associated with the identifier.

Storage layout attributes do not apply to labels.

Part I -- Description of the MAD/I language

34 Section 3: Attributes

If the identifier has a structured mode, then that includes
additional attribute information to describe its value; for
example, a fixed array has "dimension", and its components have
a mode,

Each constant has a mode, a length, an alignment, and a
storage class (which is always 'STATIC' -- see Sec. 3.4.1). It
also has a value, of course, but this is not considered an

"attribute".

Each expression has a mode, which is the mode of its
result. It may also have a storage class and storage layout
attributes.

Most of the attributes are represented in the language by
attribute keywords, which are used in declarations to specify
attributes of items. Some attribute keywords take ‘*"suffixes",
which may be optional or required, to specify additional
attribute information.

Sections 3.1 to 3.4 below describe the various attributes
thenselves in detail. Sections 3.5 to 3.9 describe the various
ways of assigning attributes to identifiers, constants, and
expressions.

Part I -- Description of the MAD/I language

L 2.

[

$my

-

-

| S

| S

-

Section 3: Attributes 35

3.1__Mode Attributes

Every identifier, constant, and expression acquires a mode
attribute, either by explicit declaration or by implicit
declaration. Each mode characterizes a set of possible values,
and also the form of a value of that mode in computer storage.
In general, the mode of an item strongly affects the treatment
of that item by the operators and statements of the language.

Most modes also carry implied values for the 1length and
alignment attributes, so that these often need not be explicitly
declared. For examples: 'CHARACTER' mode has an implied
alignment of 1, and 'FLOATING LONG' mode has implied length 8
and implied alignment 8.

There are two classes of modes in MAD/I -- primitive nmodes
and structured modes:

The primitive modes characterize relatively simple data
objects, and are "atomic" in the sense that they require no
other modes for their definition. Most of the primitive modes
(like 'INTEGER SHORT' mode) are intentionally defined as direct

counterparts to the hardware data types of the IBM System/360.

Note: This approach allows the MAD/I user strong
control over the machine code produced by the
compiler. Thus, it enhances the usefulness of MAD/I
for vwriting system programs for the IBM 360. However,
this approach also has the disadvantage that it tends
to make programs machine-dependent and thus less
transferable.

Some of the primitive modes are called "arithmetic" modes. This
simply means that they characterize arithmetic values -- i.e.,
representations of numbers -~ and that sone arithmetic
operations (such as addition) have been pre-defined for then.

The structured modes characterize relatively conglex
objects which have "components" or "results" for which more mode
information may be required. For example, if an item has 'FIXED
ARRAY' mode, then the mode of the components of the array must
somehow be determined. This can be explicitly declared by a
declaration statement such as

'DECLARE' A 'FIXED ARRAY' (7) 'POINTER' *BOOLEAN'

which declares that the value of variable A is a fixed array of
7 components, each of which is a 'POINTER' mode value pointing
to an object of 'BOOLEAN' mode. ‘*FIXED ARRAY' and 'POINTER' are
structured modes, while 'BOOLEAN' is a primitive mode.

Part I -- Description of the MAD/I lLanguage

36 Section 3: Attributes

Structured modes are also very useful for creating new,
compléx, user-defined modes. This will be discussed more fully
in Section 9.

The pre-defined nmodes are 1listed below, and defined in
detail in the following subsections:

Pripitive modes: 3.1.1
*INTEGER SHORT' mode 3.1.1.1
'INTEGER LONG' mode 3.%1.1.2
'FLOATING SHORT' mode 3.1.1.3
'FLOATING LONG' mode 3.1.1.4
'*PACKED' mode 3.1.1.5
*BIT' mode 3.1.1.6
'BOOLEAN* mode 3.1.1.7
'CHARACTER' mode 3.1.1.8
'VARYING CHARACTER' mode 3.1.1.9
'FILE NAME' mode 3.1.1.10
'TRANSFER POINT' mode 3.1.1.11

Structured modes: 3.1.2
Array modes 3.1.2.1

'FIXED ARRAY' mode 3.1.2.1.1

'VARYING ARRAY' mode 3.1.2.1.2
'COMPONENT STRUCTURE®' mode 3.1.2.2
'ALTERNATE' mode 3.1.2.3
'POINTER' mode 3.1.2.4
'ENTRY POINT' mode 3.1.2.5
TENTRY NAME' mode 3.1.2.6

fart 1 -- Uescription of the MAD/I Language

e

-

Section 3: Attributes 37

3.1.1__Primitive Modes

3.1.3.1__'INTEGER_SHORT' mode

'*INTEGER SHORT' mode (abbreviation 'IS') is an arithmetic
mode with integer values ranging from -32768 (-21S) to +32767
(215-1) . It has implied length 2 and implied alignment 2.

321.1.2 _'INTEGER_LONG' _mode

*INTEGER LONG' mode (abbreviations 'IL', 'INTEGER', 'I') is
an arithmetic mode with integer values ranging from -2147483648
(-231) to +2147483647 (231-1). It has implied 1length 4 and

alignment 4.

3.1.1.3 _'FLOATING SHCRT' mode

*FLOATING SHORT' mode (abbreviations *'FS', *'FLOATING', 'F')
is an arithmetic wmode with signed (+ or =-) values whose
magnitudes range from about 5.4 x 10—-79 (1/16 x 16—¢¢) to about
7 x 10?5 ((1-16—6) x 1663) , and with a maximum precision of six
hexadecimal digits (about seven decimal digits). The zero value
is also included. This mode has implied length 4 and alignment
4,

3.1.1.4__'FLOATING LONG' mode

'*FLOATING LONG' mode (abbreviatiom 'FL') is an arithmetic
mode with essentially the same range of values as 'FLOATING
SHORT' mode, but with a maximum precision of 14 hexadecimal
digits (about 17 decimal digits). It has implied length 8 and
alignment 8.

3.1.1.5 'PACKED' mode

'*PACKED' mode is an arithmetic mode with integral values
expressed as signed decimal integers. The attribute keyword
‘PACKED' takes an optional suffix of the form (L) , where L
specifies the length attribute, and must be a constant from 1 to
16. If the suffix is omitted, the default 1length is 1. The
value is 2xL-1 decimal digits, with a sign. An alignment of 1
is implied.

Part I -- Description of the MAD/I language

38 Section 3: Attributes

3.1.1.6__'BIT' mode

A 'BIT* mode (no abbreviation) value 1is a fixed-length
string of bits, which can also be treated as an unsigned binary
integer. The attribute keyword 'BIT' takes an optional suffix
of the form (L) , where L is an integer constant from 1 to 32
which specifies the bit length of the string. 1If the suffix is
omitted, the default length is 1.

The compiler currently requires that the storage assigned
to each 'BIT' mode item lie within a singie 32-bit word (4 bytes
with alignment 4); that is, 'BIT* mode storage assignments
cannot overlap word boundaries. Thus, the alignment of a 'BIT®
mode item is determined by two special rules:

(a) If the item 1is a component of a 'COMPONENT
STRUCTURE!', it 1is aligned to the next available
bit, unless the item will then not fit within
that word, in which case it is aligned to the
first bit in the next word.

(b) In all other cases, the exact alignment is
undefined. For this reason, 'BIT' mode items
currently should not be passed as parameters,
except as components of component structure or
array parameters.

'BOOLEAN' mnmode (abbreviation 'BOOL') has exactly two
values: 'TRUE' and ‘'FALSE'. It has implied 1length 1 and
alignment 1.

3,1.1.8__'CHARACTER' mode

A 'CHARACTER' mode (abbreviation *'C') value 1is a fixed-
length string of characters. The attribute keyword takes an
optional suffix of the form (L) , where L is an integer constant
between 1 and 256 which specifies the number of characters in
the string. If the suffix is omitted, the default length is 1.
Since each character requires one byte of storage, the length
attribute is the same as the character 1length. The implied
alignment is 1.

Part I -- Description of the MAD/I Language

Baimibaicn

s

s

o

-

-

Section 3: Attributes 39

321.1.3 _*VARYING CHARACTER' mode

A 'VARYING CHARACTER' mode ({abbreviation *VC') value is a
varying-length string of characters, together with an integer
value which specifies the current length of the string. The
attribute keyword takes an optional suffix of the form (L) ,
where L is an integer constant from 1 to 32767 which specifies
the maximum string 1length. If the suffix 1is omitted, the
default maximum length is 256. At run time, the string value
may be any sequence of characters whose length does not exceed
the maximum length. This includes the "null" string, which has
length zero. The implied alignment is 2, and the implied length
is 2+ (the maximum length). The constant symbol *NULL VC* is a
pre-defined constant of this mode; it has maximum length zero,
string length zero, and length attribute 2.

3.1.1.10__'FILE_NAME' mode

A value of 'FILE NARE' mode (no abbreviation) is a set of
specifications for a MAD/I file. It has implied length 4 and
alignment 4. Refer to Section 6 (Input/Output).

3.1.1.11__*'TRANSFER _POINT' mode

, An item of *TRANSFER POINT' mode (no abbreviation) names a
point in the ©program which can receive a transfer of control
from elsewhere within the same program, but which does not have
the special properties of an "entry point". ‘'TRANSFER POINT®
mode is never explicitly dJdeclared; instead, identifiers are
contextually declared as labels by appearing before a colon in
front of a statement. As long as nothing in the program causes
a label to be declared as 'ENTRY POINT' mode, then it will
receive *'TRANSFER POINT' mode by default. All items of this
mode have 'STATIC' storage class. Items of 'TRANSFER POINT!
mode cannot be formal parameters, nor can they be passed as
actual parameters.

Part I -- Description of the MAD/I Language

40 Section 3: Attributes

3:1.2 _Structured Modes

Structured modes characterize data objects which involve
other, "subordinate" data objects., We will use the general term
"subtype" to talk about a subordinate data object (such as a
"component" or ‘'"result") of a structured-mode object. Unless
othervwise stated, a subtype may be of any mode, including the
structured modes.

2.1__Array_modes

A value of an array mode ('FIXED ARRAY' or 'VARYING ARRAY')
is an array of one or more component values. An array is a
"homogeneous" structure in that all its components share the
same mnode, storage class, and storage layout attributes. The
attribute keyword takes an obligatory suffix -- a parenthesized
list of subscript bounds specifications (see Appendix A for
explanation of syntax notation):

array-suffix = (list , bounds)
bounds = {integer ...] integer
integer = [+ | -] unsigned-integer-symbol

If two integers are given, the first one specifies the lowest
value (lovwer bound) for that subscript position, and the second
specifies the highest value (upper bound). If only one integer
is given, it specifies the upper bound, and the lower botrnd is
assumed to be 1. The upper bound must be greater than or egual
to the lower bound. The number of "bounds" given specifies the
nunber of dimensions of the array and also the number of
subscripts which must be given to designate a component. This
nunber, the set of bounds values, and the spacing (in storage)
of components, together «constitute the dimension attribute of
the array. Dimension 1is classed as a "storage layout®"
attribute.

The array-suffix may be followed by an optional explicit
declaration of a typical array component. If this is omitted,
the current *DEFAULT' declaration is copied as an implicic
declaration. The storaqe <class of a component cannot be
declared; it is always the same as the storage class of the
array.

Example:

*DECLARE' A 'FIXED ARRAY'(10,-2...5) 'CHARACTER®' (5)

declares that variable A names a two-dimensional array with 10
"rows" (first subscript) numbered from ? to 10, and 8 "columns"

Part I -- Description oi tue MAD/I Language

[

Gt

-

-

-w

e

Section 3: Attributes 41

(last subscript) numbered from -2 to S. The array has 10 x 8 =
80 components, each of which is a fixed-length string of 5
characters.

The components of an array are assigned storage at
reqularly-spaced intervals. The minimum distance from the
beginning of one component to the beginning of the next 1is the
"aligned length" of a component, which is computed as the length
of the component, extended as needed to satisfy the alignment of
the next conmponent. Along each dimension (subscript position)
of an array, the successive components have the same spacing,
which is alwvays a nultiple of the aligned length. The default
alignment of an array is the same as the alignment of its

components.

When the components of an array must be treated in serial
order (As in storage assignment or in I/0 transmission), some
sort of ‘sequencing rule"™ must be employed. The default array
sequencing rule 1is called row-major_ _order, and is the order
produced by varying each subscript from its lower bound to its
upper bound, the last subscript varying first, then the next-to-
last, etc., until all combinations have been produced. For
example, if we have declared A *FIXED ARRAY' (-1...1,2,0...2) ,
then row-major order gives the sequence: A(-1,1,0), A(-1,1,1),
A(-1,1,2), A(-1,2,0), A(-1,2,1), A(-1,2,2), A(0,1,0), 5(01111)1
Y A(Olzlz)l A(1I1IO)I‘-_U A(11212) Q

'FIXED ARRAY' mode (abbreviation *'FA') characterizes arrays
whose dimension attributes are permanently fixed at comfgile
tine. That is, the number of dimensions, the subscript bounds,
and the spacing of components are all declared just once, and
cannot vary at run time,. The MAD/I translator can take
advantage of this invariance to make operations on fixed arrays
more efficient than the same operations on varying arrays.

3.1.2.1.2 _'VARYING_ARRAY' mode

'VARYING ARRAY' (abbreviation 'VA') characterizes arrays
whose dimension attributes can vary at run time. The number of
dimensions of a varying array is fixed, but the subscript bounds
and the spacing of components can be varied dynamically with the
'*REDIMENSION' statement (see Section 5.14). The dimension
attribute declared in the program controls both the storage
allocated to the array, and also the interpretation of any
'PRESET' assignments into the array. The re-dimension operation
will not vary the location or size of the storage allocated to
the areray. For such arrays the declared dimensions should be
large enough to accommodate the maximum-size array anticipated.

Part I -- Description of the MAD/I Lanquage

42 Section 3: Attributes

3.1.2.2__'COMEONENT STRUCTURE! mode

A value of 'COMPONENT STRUCTURE' mode (abbreviation 'CS!)
is a structure of component values which may be of different
modes. Thus, a component struccure is a "non-homogeneous"
structure, in that its components need not all share the same
mode and storage layout attributes. A component structure is a
single compact data object in storage, so all its components do
share the same storage class attribute. The attribute keyword
takes an obligatory suffix -- a parenthesized list of component
declarations:

cs-suffix = (list , component-decln)

component-decln =
(component-name] declaration-string

Each component-decln declares one component, which may have any
mode, primitive or structured (except °*TRANSFER POINT' and
'ENTRFY POINT' modes), as specified by the declaration-string.
If a component-name (see Sec. 2.2.5 is given, then its
interpretation for the particular component structure is a name
for the component being declared. If the declaration-string is
empty, then the current *'DEFAULT' declaration applies to that
component.

For example, the declaration statement
'*DCL' AGG *CS' (*BIT*'(8), *INTEGERSHORT®', °*POINTER')

declares that AGG is a variable of *COMPONENT STRUCTUKE' mode,
with three unnamed components. The first component has 'BIT'
mode, the second has 'INTEGER SHORT' mode, and the third has
'POINTER' mode. Since the components are not named, they can be
designated only by their ordinal position; e.g., the second
component must be designated by the expression AGG(2) .

As another example, the declaration
'DCL* VCHAR *CS*' (*1IS', @LNG 'IS*, @CHS ‘'FA' (50)°'C*)

declares that variable VCHAR is a component structure with three
components: two of ‘'INTEGER SHORT' mode, and one *'FIXED ARRAY!
vhose components are single characters. The first component can
only be designated as VCHARK (1) ; the second as either VCHAR(2)
or VCHARSALNG ; the third as either VCHAR(3) or VCHAR$@CHS .
The Ith <character ¢t the thicd component may be designated as
either VCHAR!J3) (1) or VCHRLPACHS(I) .

The componcats « £ @ component structure have the same
oraering in storace Aas in the structure declaration. Each
component 1s pos_tioned atter the preceding component, with the

Part -- U sso.prtaion of the MAD/I Language

et ed i i e

2.
’

:!

‘o

Section 3: Attributes 43

minimum gap needed to satisfy its alignment attribute. The
default alignment of the structure is the wmaximum of the
individval component alignment attributes. The default length
of the structure is the minimusm length needed to contain all the
aligned components.

321.2.3 ALTERNATE! pode

A value of *ALTERNATE* mode (abbreviation 'ALT') is similar
to a component structure (Sec. 3.1.2.2), except that the
“components" are actually alternative interpretations of the
value itself. It is eguivalent to a component structure in
which the components all overlap each other, instead of being
disjoint. The attribute keyword takes the same form of
obligatory suffix, a cs-suffix.

For example, the declavation statement
*DCL' WHAT *ALTERNATE®' (*INTEGER',*FLOATING?)

declares that variable WHAT has ‘*ALTERNATE' mode, with two
interpretations: WHAT(1) has °*INTEGER' mode, and WHAT(2) has
'FLOATING' mode. We could also have used named components.

The value of an ‘'ALTERNATE' nmode item has only one
conponent mode at a time, and it is the prograammer's
responsibility to know which it is at any given point in the
program. Dynamic mode testing is not provided.

The alignment of the "structure" is the maximum of its

component Aalignments, and its 1length is the maximum of its
component lengths.

Part I -- Description of the MAD/I lLanguage

uy Section 3: Attributes

3:1.2.8 _'POINTER' mode

A value of 'POINTER' mode (abbreviation 'PT') is a pojpter
to another value. A "pointer" is the MAD/I counterpart of a
computer storage address, but is not necessarily implesented as
a simple address. The attribute keywvord takes an optional
suffix, which must be a declaration-string, Lo desccibe the
value pointed to. If the suffix is omitted, the usual default
is not applied; rather, the value pointed to is considered as
"not declared". ' POINTER' mode has implied 1length 4 and
alignment 4,

Examples:
DCL P1 *POINTER' 'INTECER®

declares variable P1 to have 'POINTER' mode, with values tbhat
point to values of *INTEGER' mode.

*DCL' P2 *'PT*' °'PT

deciares that the value of P2 is a pointer to a pointer to a
*not declared" value.

This mode has a pre-defined constant, 'NULL PT* , whose
value 1is a "null" pointer; it does not point to a value. Other
pointer constants may be defined as described in Secticns
2.1.4.3 and 4.2.10.

Part i -- Descraiction ot the MAD/I Language

’-—'. H ‘7‘.‘ - H _‘ ~— g ”

—

b

Section 3: Attributes 45

3.1.2.5__'ENTRY_POINT' mode

An item of 'ENTRY POINT' mode (abbreviation 'EP') names a
point in some program which can receive a transfer of control,
and wvhich has the special properties of an "entry point"
describhed below. The attribute keyword takes an optional
suffix, which maust be a declaration-string, to describe the
value produced as a result of "calling" the designated entry
pornt. If the suffix is omitted, the 'DEFAULT' declaration is
applied. Every entry point has the following properties:

(1) It can receive either "go to"™ or "call" transfers of
control.

(2) It can receive transfers (%"call®" or "go to%") from
external procedures as well as procedures within the
same prograt.

As a coansequence, an entry point is wmore "expensive" than an
oriinary transfer point, since it must perform whatever rituals
are required by program linkage conventions. Also, some entry
points take parameters, whereas transfer points cannot.

An item may ke declared 'ENTRY POINT' in several ways:
(1) Explicitly, with the 'ENTRY POINT' keyword.

(2) Contextually, as an identifier in a procedure-prefix.
For example,

*PROCEDURE' F. (X), G. (Y,Z)
contextually declares F and G as 'ENTRY POINT® .
(3) Implicitly, as a label which is declared 'ACCESSIBLE' .

(4) Contextually, as an identifier G which occurs in either
the context G.(—) or the context "G"E , and has not
been explicitly declared in the block containing the
occurrence. In this case, if G is not a label in the
program, it is contextually declared *EXTERNAL' as
vell.

Any eutry pcint declared only contextually is assumed to groduce
result values of default mode.

An item declared ‘'ENTRY POINT' wmust be an identifier.
Thus, structured values cannot have components or results of
'ENTRY POINT' mode. Also, every entry point must have ‘'STATIC!

storage class.

Part I -- Description of the MAD/I Language

46 Section 3: Attributes

32:1:2,6_ _'ENTEY NAME' mode

A value of 'ENTPY NAME' @mode (abbreviation ‘'EN') is a
pointer to an entry point, together with additional information
to determine an envircnment for the entry point. The attribute
keyword takes an optional suffix, vhich must be a declaration-
string, to describe the value produced as a result of calling
the entry point pointed to. If the suffix is omitted, the
'DEFAULT' declaration is applied.

Items of 'ENTRY NAME' mode can be constants, variables, or
expressions. (Note that *TRANSFER POINT' and 'ENTRY PCINT'
modes do not have variables.) This wmode has a pre-defined
constant, 'NULL EN' , whose value is a "null" entry name; it
does not specify an entry point or an environment. Other entry
name constants may ke defined as described in Sections 2.1.4.4
and 4.2.10. Their values point to entry points, but they do not
carry environment information; this is filled in when the value
is used.

Unlike entry points, entry names are nct restricted to
static storage class. Also, entry names may be passed as actual
parameters to .rocedures, and may be used in 'RETURN TO*
statements.

Part I -- Description of the MAD/I Language

a®

L1

“e

Section 3: Attributes 47

3.2__Storage lLayout Attributes

Storage layout attributes are applicable to items whichk are
variables, constants, or expressions. These attritutes
determine both the amount of storage allocated to an item, and
the arrangement of the item's value in the allocated storage.

3.2.1__length attribute

The "length" attribute of an item specifies the amount of
storage allocated to that item. The attribute keyword *'LENGTH'
takes an obligatory suffix of the form (L) , wvhere L is a non-
negative integer constant which specifies the length in bytes.
The length attribute is taken as the paxjmum of the value of L
and the implied length (if any) implied by other attributes of
the iten.

For example, 'INTEGER LONG' mode has an implied length of 4
bytes. The declaration statement:

"DECLARE' A 'INTEGER',
B 'LENGTH' (2) 'INTEGER',
C 'LENGTH' (6) 'INTEGER®

would cause variables A, B, and C to receive 1length attributes
of 4, 4, and 6 bytes, respectively.

For those modes whose keyvwords do not take "length"
suffixes, a declaration of the length attribute has no effect on
the value of the item, but only allows extra storage to be
allocated. In the above example, variable C will get six bytes
of storage, but its values will still be the U-byte integers of

*INTEGER®' mode.

3.2.2_ _Alignment attrjbute

The alignment attribute of an itemr specifies a constraint
on the positioning of 1its allocated storage. The attribute
keyword *ALIGN' takes an obligatory suffix of the form (A) ,
where A 1is an integer constant which specifies the "alignment
factor" for the desired alignment. The only valid values for A
are 1, 2, 4, and 8. The alignment attribute for the item is
taken as the maxjimum of the value of A and the alignment (if
any) implied by other attributes of the item. The values 1, 2,
4, and 8 correspond to byte, halfword, fullword, and doubleword
alignments, respectively.

Part I -- Description of the MAD/I langquage

48 Section 3: Attributes

For example, the declaration
*DCL' HH 'ALIGN' (4) °*CHARACTER" (8)

gives variable HH an alignment of 4.

The dimension attribute applies only to iteamas of array
modes (see Sec. 3.1.2.1), and specifies the number of dimensions
of the array, the subscript bounds for each dimension, and the
spacing (in storage) of the couponents along each dimension.
This attribute does not have its own keyword, but is declared as
part of the mode declaration.

part I ~-- Description or the MAD/I Language

we

e

-

Section 3: Attributes 49

3.3 Scope Attributes

Unlike the other attributes discussed so far, scope
attributes are concerned with pnames rather than values. Scope
attributes apply only to names vwhich are identifiers, and
represent properties of the identifier itself. Scope attributes
are closely related to the block structyre of programs, and to
the '"renaming convention"™ which allows the use of the same
symbol as different names in different contexts. These concepts
are discussed in Section 7.

There are two scope attributes: '"scope" and "owner",
defined loosely as follows:

The scope of a name is that portion of a program (or set of
programs) in which the name is uniquely "known". The scope of a
name always includes the program text internal to the block in
which the name 1is declared (explicitly or implicitly), and
always excludes the scope of any other name represented by the
same symbol.

The owner of a name 1is that block which provides the
storage associated with the nanme. This 1is significant for
external names, whose scopes extend to more than one prograbn.

Neither of the scope attributes has a direct attribute
keyword. Instead, MAD/I has a combination of 1language
conventions and scope-controlling keywords, which allow the user
precise control of these attributes. The keywords are: °'NEW‘,
*NOTNEW', *GLOBAL?, 'EXTERNAL', and *'ACCESSIBLE'; they are
applied 1like ordinary attribute keywords, and are described

below.

When a name is explicitly declared, it is normally
considered to be "new" to the "current block" (the smallest
block enclosing the declaration). It is thus a new name, its
scope 1is limited to the current block, and the current block is
its owner. But this is not alwvays true for contextual
declarations; see Sec. 3.7.1.

' NOTNEW® specifies that the name declared is not new tc the
current block. This keyword causes the scope and ownership of
the name to be extended to the next outer block, as though all

declarations for that name (except the 'NOTINEW' declaration) 1in
the current block were written in the next outer block instead.

'GLOBAL' specifies " *NOTNEW' all the way out", A name
declared *GLCBAL' has its scope extended out to all blccks
containing the declaration, in the same manner as for °*NOTNEW'.

If 'NOTNEW' or *NEW' is declared for the special identifier
'DEFAULT', the declaration affects not the scope of *'DEFAULT'

Part I -- Description of the MAD/I Language

50 Section 3: Attributes

itself, but rather all names in the current block which are uged
but not explicitly or contextually declared. Such names require
a default assumption about their scope, and this 1is «controlled
by *DEFAULT'. If 'DEFAULT' 1is declared *NEW' in the current
block, then such names are considered new to the block; if
'DEFAULT? is declared *'NOTNEW', then such names are not
considered new to the block, and thus are known in the next
outer block. If neither 'NEW' nor 'NOTNEW' is declared for
*DEFAULT', the action is as if *NOTNEW' were declared.

*FXTERNAL' (abbreviation 'EXT') specifies that the name 1is
an "external name", that it has static storage class, and that
its ovwner 1s not in the current program (the program containing
the 'YEXTERNAL' declaration). The scope of the name is extended
from the current block to outside the progranm.

VACCESSIBLE' (abbreviation *'ACC') specifies that the nanme
is an external name, that it has static storage class, and that
its owner is in the current program. Tfhe scope of the name 1is
extended from the current bloch to outside the program. The
same name must not also be declared ‘'YEXTERNAL' in the same
program, since this wWould cause conflicting declarations of its
owner.

If two or more external names are represented by the sinme
symbol, they are considered as one name whose scope is the union
of the individual scopes. This rule is applied when programs
are linked together, and allows the scope of a name to extend to
multiple programs. Ultimately, at run time, some program must
be the unique owner of the name.

In a *PROCEDURE' block, the names of all entry points arc
contextually declared 'NOTNEW!', so that the entry points are
known outside the procedure itself. If the procedure 1is the
outermost block, these names are contextually declared
*ACCESSIBLE', and thus become external names.

Tart I -- Tescraption Oof t.e MAD/I Llanguage

Section 3: 2ttributes 51

3.4__Storage_Class Attributes

Every identifier, constant, and expression has exactly one
storage class attribute, which specifies the manner in which
storage is associated with the item. The storage class may be
declared either explicitly or implicitly.

When an item is associated with storage, then we say that
storage is allocated for the item. The storage may be allocated
either "statically”" (before run time) or "dynamically"™ (during
run time). Since storage is used primarily to contain values,
the value of an item is not defined unless storage is allocated

for the item.

The storage classes are: static, automatic, based, and
formal parameter. The default storage class is static.

3.4.1__Static_storage_class

This attribute has the keyword *'STATIC!'. It specifies that
storage for the declared item is allocated before run time, and
cannot be de-allocated or re-allocated during run time.

Static storage class is required for external pnames, and is

therefore explicitly declared by the *'EXTERNAL' and 'ACCESSIBLE'
keywords.

3.4.2 _Automatic storage class

This attribut2 nas the keyword 'AUTOMATIC'. It specifies
that storage for the declared item is allocated during run tinme,
whenever the block which owns the item 1s activated. The
storage 1is de-allocated vwhen the block is terminated. During
the block activation, the storage cannot be re-allocated.

3.4.3_ _Based_storage_class

This attribute has the keyword 'BASED'. It specifies that
storage for the declared item is dynamically allocated and de-
allocated during run time, under explicit control ot the
prograa. Storage for based variables may be allocated and de-
allocated in either of two ways:

(1) With the .ALLOC. operator and a pointer-valued expression.
(See Section 4.)

(2) With the 'ALLOCATE' and 'DEALLOCATE' statements. (See
Sec. 5.13.)

Part I -- Description of the MAD/I lLangquage

52 Section 3: Attributes

3.4.4 Pormal parameter storage_class

This attribute has no keyword. Instead, it is contextually
declared for variables which appear as "formal parameters" in
procedure prefixes (see Sec. 5.7). Formal parameter storage
class 1is a consequence of the "call by reference" convention of
MAD/1. It specifies that storage for the declared item is
dynamically allocated when the formal parameter is "bound" to
its corresponding actual parameter (argument). This "binding"
occurs whenever the procedure 1s activated through an entry
point for which the formal parameter is declared. See Section
5.7 for more information.

Part -- Descriptition of tie MAD/I Language

e

Section 3: Attributes 53

3.5__Attribute Assignment --_Introduction

Sections 3.5 to 3.9 describe declarations, which specify

attributes of iteams. The items declared may be identifiers,
constants, or expressions.

Declarations may be explicitly written by the programmer;

these are called explicit declarations. Also, the language

processor may "infer'" attributes which have not been explicitly
indicated, but which are jmplied by the program and the rules of
the language; the inference of an implied attribute is called an
implicit declaration.

Implicit declarations may arise in two ways, by "context"
or by "default"“:

The appearance of an item in a certain context «can
constitute a contextual declaration for the iten.

If an item lacks some necessary attribute, which has teen
neither explicitly nor contextually declared, then it may
receive a "default" attribute by default declaration.

A declaration nay have either "unconditional" or
"conditional" effect; that is, its application to the item may
be unconditional, or may depend upon the absence of prior
declarations. In general, ~xplicit declarations are all
unconditional, default declarations are all conditional, and
contextual declarations can be either. For each item in the
program, its attributes are assigned in the following order:

(1) Assign attributes specified unconditionally. These
attributes must not conflict; if they do, it is an
error.

(2) Assign attritutes specified conditionally by contextual
declarations, wherever their conditions are satisfied.

(3) Assign default attributes, wherever needed.

Constants and expressions normally do not require explicit
declarations, since a constant gets default attributes
determined by its lexical class, and an expression gets default
attributes determined by its operator and operands. However,
the programmer car explicitly control each constant with the @
operator and each expression with the «ASTYPE. and

«.ASTYPEOF. operators described in Section 3.9.

The default attributes for variables can differ from klock
to block. They are themselves declarable (See Sec. 3.7.2).

Part I -- Description of the MAD/I language

sy Section 3: Attributes

3.6 __Explicit Declarations

There are three forms of explicit declarations:

(1) The 'DECLARE' statement form.
(2) The "inverted" declaration statement fors.
(3) The @-expression forn.

The three forms are closely related; they are simply alternative
vays of writing declarations. Therefore, much of the syntax of
(explicit) declarations is common to all three foras. This
syntax is described below, both in prose and in syntax notation.
More information on ®-class operators will be found in Section
4.2; the 'DECLARE' and ‘'DECLARE DEFAULT' statements are also
treated in Section 5.9.

Every explicit declaration requires: an occurrence of the
item being declared, and a "declaration string" of attribute
keywords and their suffixes. We will defer, for the moment, the
declaration of items which are constants or expressions, and
focus on the declaration of identifiers. The identifiers to be
declared by a given declaration string are written as an
"identifier list", which may be either a single identifier, or a
parenthesized list of identifiers:

tdentifier-list = identifier | (ljist , identifier)

Examples: A
(B,C,BETA)
(X)

The declaration string will be applied individually to each
identifier in the list.

A "declaration string" (decln-string) is a sequence of
attribute keywords and their suffixes. The sequence is
intecpreted from left-to-right, and there is a restriction on
the ordering of the keywords: any keyword which appears atter a
structured-mode keyword applies to a ‘"subtype", and must be
leqal for that usage. (We ¥will use the general tera "subtygpe"
to talk arout a subordinate data object (such as a component) of
a structured mode.) Each keyword, together with whatever suffi«
it has, specifies a "declaration" about the identifier or a
subtype. At most one mode declaration may appear for the
identifier itself.

st I - Lescripticn o Jhe NAL/I Language

= b= =y R

Section 3: Attributes

Syntax of decln-string:

decln-string = [ljst non-mode-decln) [rode-decln])

non-mode-decln = scope-decln | storage-class-decln
| storage-layout-decln

scope-decln = *'NEW' | *'NOTNEW' | °*GLOBAL'
| EXTERNAL' | 'ACCESSIBLE'

storage-class-decln = 'STATIC' | 'AUTOMATIC® | *'BASED!

storage-layout-decln = 'LENGTH' (integer)
{ *ALIGN®' (integer)

integer = [+ | -] unsigned-integer-symbol
mode-decln = primitive-mode-decln | structured-mode-decln

primitive-mode-decln =
'INTEGER SHORT' | 'INTEGER LONG®
| 'FLOATING SHORT® | °*PLOATING LONG®
*PACKED® [(integer)]
'BIT' [(integer)]
' BOOLEAN?
'CHARACTER® [(integer)]
*VARYING CHARACTER' [(integer))
'FILE NAME'

structured-mode-decln =

'PIXED ARRAY' (list , bounds) subtype-decln

| *VARYING ARRAY' (list , bounds) subtype-decln
YCOMPONENT STRUCTURE' (list , component-decln)
'*ALTERNATE' (list , component-decln)
'POINTER' ([subtype-decln])
'ENTRY POINT' subtype-decln
'ENTRY NAME' subtype-decln

bounds = [integer ...) integer
subtype-decln = [list storage-layout-decln) [mode-decln]

component-decln = [component-name] subtype-decln

Examples of decln-string:

(a)
(b)
(c)
(d)
(e)
(£)

'INTEGER SHORT'
'*PACKED' (7)
'EXTERNAL®

'BASED' 'ALIGN' (8)
'NOTNEW®' °*CHARACTER'
'FIXED ARRAY' (20

Part I -- Description of the MAD/I Language

55

56 Section 3: Attributes

(9) "PIXED ARRAY' (5,10) °'LENGTH' (&) 'BIT* (18)
(h) 'BASED' *ALTERMNATE' ('INTEGER', * POINTER' *BOOL')
(i) 'ALIGN® (8) 'FOINTER'

In example (g) above, the 'LENGTH* declaration follows the
structured-mode keyword, and thus it applies to the copponents
of the array, rather than to the array jtself. 1In example (i),
the °ALIGN' declaration applies to the pointer value itself,
rather than the object pointed to. Note that scope and storage
class can not be declared for subtypes; therefore the folloving
are exaamples of jpvalid declaration strings:

*PIXED ARRAY' (3) °*INTEGER® *BASED'
'FOINTER' - EXTYRNAL' *FLOATING®

Having defined and illustrated identifier lists and

declaration strings, we vill now describe the various forss of
explicit declarationms.

part I -- Description of the MAD/I Language

P s

e

-

-

.
hah) IS NSRRI SO WY NPT

Section 3: Attributes 57

3.6.1__The *DECIARE' statement fors

————

The 'DECLARE' statement (abbreviation °'DCL') is the “root"
form for explicit declarations. It conmsists of the statement
keyword °*CECLARE® followed by one or more jidentifier lists, each

followed by a declarationm string, separated by commas.

DECLARE-statement =
'DECLARE®' list , (jdentifier-list decln-string }

Note that a decln-string can be "empty"; i.e., it can be
omitted. The effect of +he 'DECLARE' statement is:

(a) Each identifier in each identifier list is "declared"
in the current block. This will usually cause it to

be "new" to the current block (see Section 3.3).

(b) In each jdentifier list, each jdentifier receives the
attribute specifications defined by the declaration
string (if any) ismediately following. These
attributes are specified wunconditionally®.

Examples of '‘DECLARE' stateaments:

SDECLARE' A ’

*DECLARE' (B,C,D,E)

*DECLARB® M,NN,P

*DECLARE' AA ‘INTEGER'

'*pCL* (BB,CC,DD) ' BOOLEAN'

*DCL' FFP *FIXED ARRAY' (0...5) 'FLOATING',
(GG, HH) *BASED' *INTESER',
PLAGS *ACCESSIZLE' °*BIT' (32)

part I -- Description of the MAI/I Language

I —— e

58 Section 3: Attributes

Gmmempr §
[& .

3:6.2 Inverted declaration statemept form

The "inverted" declaration statement fora is provided
solely for ©programmer convenience. It may be considered as a
"transformation® of the *DECLARE' form, in which the ‘'DECLARE'
keyword is replaced by an attribute keyvord, wvhich is extracted
from the declaration string. Some example pairs of equivalent
statements:

[S]
0

DECLARE A *INTEGER'
'INTEGER® A

DECLARE B 'PIXED ARRAY' (4,4) °*PLOATING'

*FIXED ARRAY® B (4,4) °*FLOATING'

DCL (C,D,E) 'CHARACTER' (50), F *CHARACTER®' (5) -
CHARACTER (C,D,E) (59), I (5)

Each inverted declaration stateament consists of an =
attribute keywvord (wvhich also functions here as a statement
keyword) followed by one or more identifier lists separatec¢ by
commas; each identifier list may he followed by whatever suffix !
the keyvord needs, followed by the remainder of the desired
declaration string.

inverted-declaration-statesment =
attribute-keyword list , (identifier-list
[decln-suffix]) [decln-string] }

decln-suffix = { integer)
I (l1ist , bounds) [subtype-decln]
| (1igt ., component-decln)
| subtype-decln

The inverted statement is treated as though it wvere transfgrned
to & 'DECLARE' statement by replacing the initial attritute
keyword with *'DECLARE', and inserting the attribute keyword
immediately after each identifier list.
More examples of inverted declaration statements:

*INTEGER' A,B,C

LENGTH S (10), T (8) *INTEGER', U (8) 'CHARACTER'

*BASED' (L,M,N) °*INTEGER', (P,Q) ‘'BOOLEAN', -
STR 'COMPONENT STRUCTURE' (°*BIT* (8), °'BIT' (24))

ru

Part I -- Description of the MAD/I Language

-e

*on

L]

‘-

Section 3: Attributes 59

3:6.,3 _The_ o-expressjion_form

The @-expression declaration form is included primarily for
specifying the attributes of constants, but it may also be used
for identifiers. This form allows an explicit declaration to be
attached to an ordinary occurrence of an identifier or constant
in an expression. The declaration consists of the item eLkeing
jeclared, followedi by the infix operator @ , folloved by a
parenthesized declaration string:

d-expression = {identifier | constant} @ (decln-string)

The effect of the @-expression for an identifier is the same as
that of a ‘'DECLARE!' statement vith the same identifier and
decln-string. The effect for a constant will be discussed in
Section 3.8, The fresult of the expression is the same as the
result of the identifier or constant.

Examgles: ABC 2 (*INTEGER')

17 @ (*PACKED' (5))
"00C1C2C3" @ (°CHARACTER')

Part I -- Description of the MAD/I Language

60 Section 3: Attributes

3.7.1__cContextyal Declarations

Contextual declarations are those vhich are implied by the
usage of items in certain particular contexts. An appearance of
an item in one of these contexts constitutes a contextual
declaration about the item. The following contexts are defined:

Statement label. If an identifier appears before the
special syabol 5 in front of a (possibliy eampty) staterent,
that identifier is contextually declared as a label , and as
"new" to the current block.

Procedure-prefix _entry _pojnt. Bach identifier -waich
apoears as an entry point in a proc-prefix (Sec. 5.7) is
contextually declared as:

(a) a label;
{(b) *"notnevw" to the procedure block;
(c) of 'ENTRYPOINT' mode.

If the procedure block is the guterpost block, eachk such
identifier is contextually declared *ACCESSIBLE' as well.

Procedure-prefix_fcrmal parameter. EBach identifier which
appears as a formal parameter in a proc-prefix is contextually
declared as a variable, "new" to the procedure block, and of
forual parameter storage class.

Procedure-call. If an identifier appears as the left
operand of the procedure-call operator (.), it is cortextually
declared as 'EXTERNAL' and ‘*ENTRYPOINT*. This is specific:
"conditionally", so that if any expljcjit declarations appear for
the identifier, the contextual 4eclaration will not be app.ied.
The scope of the identifier is otherwise not affected. If the
identifier appears as a label in the program, the *EXTFLNAL?
specification is not applied.

Part I -- Description of the MAD/I Language

[
| 2 =1

b gy e

Psed ey

4

[z
P

-

id

:‘i

Section 3: Attributes 61
3.7.2 Default Declarations

MAD/1 does not require that the attributes of each
identifier be declared completely. Por example, if a variable
is declared to have an array mode, but the nmode of the array
components is not explicitly declared, this is not an error. 1In
each programs block there is a set of default attributes, which
are used to %fill-in™ attributes wvhich have been neither
explicitly nor contextually declared. There are default
attributes for storage class and mode, and a default rule for
determining the scope attribute. In each block, the default
information for that block is associated with the special
identifier 'DEFAULT' , wvhich is itself declarable as descrited
below.

The rules for applying defaultx attributes to a given
yarisble in a given block are:

(1) If the variable has been used in the block, but has not
been explicitly or contextually declared, then its scope
vwith respect to this block is determined froa 'DEFAULT' as
follovs:

(a) If *DEPAULT® is declared *NEW' or ‘'NOTHNEW' in
this block, the variable is "new"™ or "notnewvw" to the
block, respectively (see Sec. 3.3).

(b) If 'DEPAULT® is pot declared either *NEW*' or
'NOTNEW' ir this block, the variable is "notnew" --
the usual case.

(2) If the variable has no storage class specified, apply the
default storage class. This may be any storage class other
than formal parameter.

(3) If the variable has no mode specified, apply the default
mode. If the variable has a structured mode specified, but
some subtype (e.g., component, result) nmode is not
specified, then apply the Jdefault mode to each such
subtype.

The rule for applying default attributes to a given label
in a gqiven block is: if the label has no mode specified, apply
'TRANSFER POINT' mode; if the label has *ENTRY FOINT' wmode but
the subtype mode is not specified, apply the default mode to the
subtype.

Part I -- Description of the MAD/I Language

PG I e — P —

62 Section 3: Attributes

The default information itself is declarable for each
block. It can be explicitly declared in any of three ways:

(1) With the °*DECLARE DEPAULT' statement (abbreviation °*DCLD';
see Section 5.9).

E.g., "DECLARE DEFAULT' °*INTEGER LONG'

(2) With a *DECLARE®' statement with *DEPAULT® in an identifier
list.

E.g., °*DECLARE* °'DEFAULT®* °*AUTOMATIC' °'FLOATING'

(3) With an inverted declaracion statement with *DEFPAULT' in an
identifier list.

E.g., *PIXED ARRAY* *DEFAULT® (3) *FLOATING'

If the default information for a block 1is not coampletely .

explicitly declared, then the missing attributes are "filled in"
from the defaults of the next outer block. For this purgose,
the outermost program block is considered as contained in an
imaginary block with defaults *STATIC®' ‘PLOATING SHORT'. For
example, if the outermost program block contained the
declaration

*DECLARE DEFAULT® *FIXED ARRAY® (3)

and no other explicit declaration of deiaults, then the defaults
for that block would be

Storage-class: *STATIC®
Mode: *FIXED ARRAY' (3) 'PLOATING SHORT®' .

Part I -- Description of the MAD/I language

e = U

Bt

-

bod Gud GEE G m

=N

ae

-

se

Section 3: Attributes 63

3.8 __Attributes _of Constapts

As previously describted in Sections 2.1 and 2.2.2,
constants have various external foras, vhich 4e call "lexical
classes", For each constant, the coapiler amust be able to
compute an appropriate internal fora for computation. HMAD/I
allows the explicit specification of attributes of constants,
and provides that the conversions froam external to internal
forms are controlled by botk 1lexical class apd additional
attributes.

FPor each lexical class of coanstant symbol, there is a
standard conversion to a specific mode. The programmer can use
the] operator to declare additional attributes of an
occurrence of a constant syabol. The ‘*LENGTH® and °*ALIGN®
attributes can be used to adjust the storage allocation and
positioning of the internal foram. Por some lexical classes, the
mode attribute is also declarable. All <constants have only
'STATIC*' storage class. The rules for the various lexical
classes are described below. The conversion rules theamselves
are not declarable, nor are they affected by the defaults
established for identifiers.

3.8.1 Upnsjgned-ipteger sysbols
Standard conversion: SINTEGER LONG®' mode.

Alternate conversions: ‘YINTEGER SHORT', *FLOATING SHORT',
SPLOATING LONG®, °*PACKED®* (with optional length).

Exanple: 305@('IS') converted to *INTEGER SHORT'.

3:8:2 Unsigned-floating-point symbols
Standard conversion: 'PLOATING SHORT' mode.

Alternate conversions 'FLOATING LONG®.

Example: 12.373('FL®') converted to *FLOATING LONG'.

3:.8.3_ _Character syabols

Standard conversion: SCHARACTER®' mode, with length equal to
the number of characters represented betveen the guotes.

Alternate conversion: 'CHARACTER® mode, with length greater
than that iaplied by the symbol; the internal foram is
extended on the right with character-fill characters
(blanks) .

Part I -- Description of the MAD/I language

64 Section 3: Attributes

Example: "ABCDE"™d (*CHARACTER' (8))

3.8.4__Hexadecimal sysbols

Standard conversion: *INTEGER LONG' mode; the hexadecimal
digits are treated as an integer expressed in base 16.

Alternate conversions: YINTEGER SHORT' mode: base 16 integer.

'PACKED' mode: Lase 16 integer. 'CHARACTER®' mode:
hexadecimal digits are treated as a bit string, and

left-justified in the storage allocated for the constant,

with trailing zero bits as fills. *FLOATING SHORT'

'"PLOATING LONG' modes: bit string left-justified, with

trailing zero bits as fills.

Example: "O1FF"X3 ('C*(5)) converted to *CHARACTER' mode.

3.8,5__Pojnter-constant symbols
Standard conversion: *POINTER' mode.

Alternate conversions: none.

3.8,6 _Eptry-name copstapt sympbols

Standard conversion: *tENTRY NABME' mode.

Alternate conversions: none.

Part I ~-- Pescription of the MAD/I Language

.-

-

’f‘: r— -

e

(o I S

i ud Ood D8 Ol

| -

| &

Section 3: Attributes 65

3.9__Attribytes of Expressjions

Most expressions need not have their attributes explicitly
declared. Instead, an expression's attributes are implicitly
"synthesized" from the attributes of its operands, according to
a "mode context"™ rule of its operator. But sometimes the
implied attributes cannot be synthesized because of incoaflete
information (e.g., a pointer value may point to an "undeclared"”
value). Also, a programmer may occasionally need to "override"
tke implied attributes. Thus, there are two pre-defined
operators which allow the prograeser to explicitly declare
attributes of expressions; these are the .ASTYPE. and
.ASTYPEOF. operators, described below.

.ASTYPE. (abbreviation .AS.) is an infix operator wvhich
takes an expression as its left operand and a parenthesized
declaration string as its right operand:

astyre-expression = expression .ASTYPE. (decln-string)

The result of the astyre-expression is exactly the result of
"expression", but wvith the mode and storage-layout attritutes
specified by "decln-string®; the storage class of the result is
alvays the storage class of "expression".

For example, suppose we ¥Wish to create a "translate table"
of characters, such that for each integer which is the internal
code of a character, the table maps that integer to the
‘*CHARACTER' wmode value which has that internal code. Thus, the
table defines an "identity" translation on character codes. Llet
the table be named TTC; it might be constructed for the IBM 360
by the following program segment:

DCL I °'INTEGER', IB *BIT'(8),
TTC *FIXED ARRAY' (0...255) *CHARACTER' (1)

*POR' I1:=0,1,I>255; 1IB := I:
TTC(I) := IB .ASTYPE. (*C*) 'ENDFOR®

This example assumes (correctly) that the length and alignament
of a variable declared *'BIT'(8) will satisfy the requirements of
CHARACTER(1). All uses of .ASTYPE. and .ASTYPECF. involve
such assumptions; it is the programmer's responsibility to be
sure they are correct.

Part I -- Description of the MAD/I Language

66 Section 3: Attributes

.ASTYPEOF., 4is an infix operator vhich takes an expression
as its left operand and a parenthesized variable as its right
operand:

astypeof-expression = expression .ASTYPEOP. (variatle)

The result of the astypeof-expression is exactly the result of
"expression", except that its mode and storage-layout attributes
are copied from "variable".

For example, in the "translate table™ exaaple descrited
above, ve could have vwritten:

'DCL* I *INTEGER', IB *BIT'(8), CHAR 'C' (1),
TTC *FIXED ARRAY' (0...255) *C*;

'FOR* I:=0,1,I>255; 1IB := I
TTC(I) := IE .ASTYPEOF. (CHAR) *ENDFOR'

Part I =-- Description of the MAD/I language

L 1]

e

Section 4: Expressions 67

Section 4;: Exrressions

4.0 _Basjic_Concepts

An expressjon is a syntactic form vwvhich specifies the
computation of a result. An expression can be a "priamitive
expression" (such as a constant or identifier), wvhose result
requires 1little or no computation, or a "composite expression®
(such as A¢ (B*C), VT (I), or .ABS.X), wvhose result is oktained
from an operation uron the result(s) of one or more sub-
expressions, or an "embedded statement", wvhich is described
later. Bach comrosite expression consists of an gperator, vith
one or two adjoining "operand expressions" wvhose results are the
operands for the operation. The operatioa itself is detersined
by the operator, together with selected attributes (such as
sode) of the operand expressionms.

The result of an expression is either a [feference or a
yalue, A "reference" 1is, in effect, a "location" -- an
identification of a region of storage which contains a value
(primitive or structured). An expression which produces a

reference result is called a designator.

Note: A "reference" is not the same as a "pointer". A pointer
is a type of value which corresponds to a reference, fLut
vhich can be copied and othervise manipulated.

Example_expressjions Desigpnator?
ALPHA Yes
VECT(1,J) Yes
AA + BB . No
FN. (X) No
vV := 1 Yes
“ABC" No
-10 No
+IND. PTR Yes
A ** _ABS.B No
(A+B) / (C-D) No

Any expression can be enclosed in parentheses without
affecting its meaning. Parentheses so used act as "grouging
marks" only, and do not convert an expression into a "list" or
“sequence".

The operators, besides being categorized as prefix,
postfix, infix-left, and infix-right (see Sec. 2.2.4), are also
assigned precedences ("precedence levels", "priorities",
"binding strengths"). Operator precedences are used in the
usual way to resolve the structure of expressions which are not
fully parenthesized, and vhich might othervise be syntactically

Part I -- Description of the MAD/I Language

68 Section 4: Expressions

ambiguous. See Sec. 4.3 for the precedences of the pre-defined
operators.

The order of computation of a composite expression is only
defined as constrained by the structure of the expression,
together with the interpretation rules of the individual
operations. In particular, we do not say that an expression is
normally evaluated "left-to-right", For exaample, in the
expression (A+B)*(C+D), the sub-expressions A+B and C+D must
both be evaluated before the #* operation, but they may be
evaluated in either order.

Expressions are used (syntactically) to build gtatements,.
That is, an expression can constitute a statement or a part of a
statement. Likewise, it is possible to use statements to bunild
expressions. Any MAL/I statement can be made 1into a
parenthesized statement which produces a well-defined result;
such statements are called "embedded statements", and they
qualify as expressions. See Sec. 5.6 for more inf-reation on
embedded statements.

We will occasionally wish to talk about expressions which
produce results of certain nmodes. We will use the tern
"arithmetic expression® to refer to any expression vhich
produces a result of an arithmetic mode: ‘'INTEGER SHORT',
'*INTEGER LONG', *'FLOATING SHORT', *PLOATING LONG', or ‘'PACKED'.
We will also use the term "character-string expression" to refer
to any expression producing a result of *CHARACTER' or ‘'VARYING
CHARACTER" mode. Similarly, "arithmetic designator" and
"character-string designator" refer to arithmetic and character-
string expressions vhich produce referepce results.

4.1 _Primitive Expressicns

There are only two kinds of primitive expressions:
identifiers and constants.

An identifier (a variable or a label) rroduces a geference
result -- a reference to the storage currently allocated for the

identifier, which is assumed to contain the yalue of the
identifier. If no =storage 1is so allocated, this is an error

condition, and the result is undefined.

the constant. A constant may or may not be explicitly
represented in the object module; it may or may not have
associated storage.

Part I -- Description of the MAD/I Language

e .

LR

'3

<4

-

nstasisetind

L

—

Section 4: Expressions 69

4.2__Operations

The various pre-defined operations are listed below. For
each operation there is a pre-defined operator which denotes
that operation in some contexts. The contexts are all defined,
unless othervise indicated, by the pmode attributes of the
operand expressions. Thus, for each operation and corresponding
operator, ve give those pre-defined "mode contexts" for which
the operator denotes the operation and the operation is defined.
We also give the mode and type of the result.

Legend for context tables:

The various 1st operand modes 1label the rows, and the
various 2nd operand modes 1label the columns. Each row-
column position corresponds to a potential mode context for
the operator. Each blank position defines an invalid mode
context; each non-blank position defines a valid mode
context. A non-blank table entry has one of tvwo forms: (1)
A mode abbreviation of one or two letters, meaning that the
operation 1is defined for this context, and the result has
the mode indicated. (2) A digit (1 or 2) followed by a
mcde abbreviation, meaning that a copy of the 1st or 2nd
operand (as indicated by the digit) is converted to the
mode indicated, and the table is re-entered with tne new
mode context.

4.2.1 _Arithmetic operations

The arithmetic operations are primarily defined on the
following "arithmetic modes®:

Keyvword {Abbrev. For Tables)
*INTEGER SHORT? IS
*INTEGER LONG?® IL
*FLOATING SHORT! FS
*FLOATING LONG? FL
*PACKED? PK

Some arithmetic operations are also defined for some contexts
using the "semi-arithmetic" modes:

'BIT? BT
'POINTER® PT

The arithmetic operations are as follows:

Part I -- Description of the MAD/I lLanguage

70

Addition (binary), denoted by “+"; e.g., "A & BW,

Section 4: Expressions

The operand-

result contexts are summarized in the table below.

mew | PL| PFS| IL| IS | PK| BT | PT |

+ t + + t + 4 |
FL | FL | 2FL | 2FL | 2FL | 2FL | | 1IL }
PS | 1PL | FS | 2FS | 2PS | 2FS | | 1IL |
IL | WL | 1PS | IL | 2IL | 2IL | 2IL | PT |
IS | 1PL | 1FS | 1IL | IS | 2IS | 2IS | PT |
PK | 1FL | 1FS | 1IL | 1IS | PK | | 1IL |
BT | | | 1IL | IS | | BT | I
PT | 2IL | 2IL | PT | PT | 2IL | I I

Subtraction (binary), denoted by "-%; e.g., "A - B"., The result
is a value -- the value of the 1st operand minus ‘the value
of the 2nd operand. See the folloving table.

“.® | FL | FS)] IL | IS} PK| BT | PT |

1 { + + + 1 + |
FL | FL | 2FL | 2FL | 2FL | 2FL | | |
FS | T'"FL { PS | 2FPS | 2FS | 2FS | | |
IL 1L | 1Fs | IL | 2IL | 2IL | 21IL | |
IS | 1FL | 1FS | 1IL | IS | 2IS | 2IS | |
PK | 1PL | 1FS | 1L | 1IS | PK | | |
BT | | | 1IL | 11Is | | BT | |
PT | 2IL | 2IL | PT | PT | 2IL | | IL |

Multiplication (binary), denoted by "*"; e.g., "A * Bw, The

result is a value =-- the product of the operand values.
See the following table.

“x¢ | FL | FS | IL | IS | PK | BT |
t + + t + + l
FL | FL | 2FL | 2FL | 2FL | 2FL | |
FS | TFL | FS | 2FS | 2FS | 2FS | |
IL | ML | 1FS | IL } 2IL | 2IL | 2IL |
IS | MFL | 1FS | 1IL | IS | 2IS | 2IS |
PK | ML | 1FS | 1IL | 1IS | PK | |
BT | i i 1IL | 1IS | | BT |
4

Division (binary), denoted by "/%; e.g., "A / B". The result is

a value
operand value by the 2nd operand value.

the

quotient

obtained by dividing the 1st

If both operands

have integer-like (not floating-point) modes, the operation
is "integer division",

above.

See the table

for multiplication,

Part I -- Description of the MAD/I Language

ne
an

ne

L

w—

$e

-

re
-

we

Y3

Section 4: Expressions 71

Remainder (binary), denoted by ".REM."; e.g., "I .REM. J". The
result is a value -- the remainder obtained from dividing
the 1st operand value by the 2nd operand value. See the
following table.

".REM."| IL | IS | PK | BT |
+ + + + |
IL (IL { 2<IL | 2IL | 21IL |
IS 1IL | IS | 2Is | 21Is |
PK | 1IL | 1IS | PK | |
BT 1IL | 1IS | | BT |
Negation (unarcy), denoted by ".NEG." (or prefix "-"); e.g.,

".NEG. AY, M-aAn, The result is a valwe -- the arithmetic
negative of the operand value. See the following table.

".NEG." FL FS IS | PK |

l | l
i L 'l
T + L
{ | l

FL FS

Absolute value (unary), denoted by ".ABS."; e.g., ".ABS. A".
The result is a value -- the value of the operand if that
is non-negative, othervise its negative. See the table for
negation, above.

Exponentiation (binary), denoted by "**"; e.g., "A ** Bv, The
result is a value -- the 1st operand value raised to the
power of the 2nd operand value. See the following table.

Wkxw| FL | FS | IL | IS | PK | BT |
+ + + + + + |
FL | FL | 2FL | PFL | 2IL | 2IL | 2IL |
FS |+ TWFL § FS | PFS | 2IL | 2IL | 21IL |
IL | TFL | Y'FS | IL | 2IL | 21IL | 21IL |
IS | 9FL | 1FS | 1IL | 1IL { 2IS | 2IS |
PK | FL | 1FS | 1IL | 1IS | 1IL | |
BT | | { 1IL | IS | | BT |
J

Part I -- Description of the MAD/I Language

72 Section U4: Expressions

4,2.2_ _Relational operations

The six pre-defined relational operations are described as
a group. The result of each is a Boolean value -- representing
vhether the operand values sati.:fy the specified relation.
Equality (binary), denoted by "='"; e.g., "A = BY,

Inequality (binary), denoted by "-=" and ".NE."; e.g., "A -~= Bv,
"A. NE. B",

Greater-than (binary), denoted by ">"; =2.g., "A > BY.

Greater-than-or-equal-to (binary), denoted by NH=n, €¢Ge,
"A >= B,

Less-than (binary), denoted by *<"; e.g., ™A < BW,
Less-than-or-equal-to (binary), denoted by "<="; e.g., "A <= B".

All six operations are defined for the mode contexts shown
in the following two tatles:

REL'N| FL | FS | IL | IS | PK | BT |
4 + ol + + l
FL | BL | 2FL | 2FL | 2FL | 2FL | |
FS | 1FL | BL | 2FS | 2FS | 2PFS | |
IL | 1L | 1FS | BL | 2IL | 2IL | 2IL |
IS | 1PL | 1FS | 1IL | BL | 2IS | 2IS |
PK | 1FL | 1FS | 1IL | 1IS | BL |)
BT | | | 1IL | IS | i BL |
J
REL'N{ BL | BT | VvVC | C |
+ 1 [
BL | BL { 2BL | | i
BT | 1BL | BL | | |
vC | | { BL | BL |
C | [{ BL | BL |
d

Boolean values are compared by interpreting 'TRUE' as "%

and 'FALSE' as "0". Character strings are compared according to
the collating seguence of the character set. If the two
character strings hLave different 1lengths, the shorter string
value is extended on the right with character-fill characters

(klanks) before comparison.

Part 7 -- Description of the MAD/I Language

e comns
.

=]

-

-

LR

&b

—

Section 4: Expressions 73

The equality and inequality operations are also pre-defined
for operand pairs of the following modes:

'POINTER!' (P1I, PT)

'ENTRY NAME' (EN, EN)

4.2.3 Boolean operations

The boolean (logical) operations are defined on operands of
Boolean and Bit wmodes only; they all produce Boolean value
results vhich depend upon the values of the operands. Bit mode
operands are converted to Boolean mode.

Logical negation (unary), denoted by *-" and "“.NOT."; e.g.,
"~ p®, % _NOT. PV, ‘

Logical "and" (conjunction) (binary), denoted by "&% and
w_AND."; e.g., "P & Q", "P .AND. Q". If either operand is
'FALSE', the other operand expression possibly may not be
evaluated.

Logical “or* (disjunction) (binary), denoted by "(" and ".OR.";
€.9., "P | Q", *p _OR. QY. If either operand is 'TRUE',
the other operand expression possibly may not be evaluated.

Logical "exclusive or" (binary), denoted by ".EXOR."; e.g.,
*p .EXOR. QY.

Logical "implication" (binary), denoted by ".THEN."; e€.g.,
*p _THEN. Q". The result is 'FALSE' if the 1st ofperand is
'TRUE' and the 2nd operand is ‘'FALSE'; otherwice, the
result is 'TRUE'. If the 1st operand is 'FALSE!' or the 2nd
operand is 'TRUE', the other operand expression possibly
may not be evaluated.

Logical = "equivalence" (binary), denoted by ".EQV."; €.Gey

“pP .EQV. QY. The result is *TRUE' if the operand values
are equal, and 'FALSE' otherwvise.

Part I -- Description of the MAD/I language

74 Section U4: Expressions

The bit-string operations are defined on operands of all
modes except 'TRANSFER POINT' and 'ENTRY POINT'. The result is
always a bit-string value, with the same mode and length as the
1st operand.

The_bitwise logical operations:

The operand values are treated as bit strings. The binary
operations "and", "or", and "exclusive or'" require equal-length

operands.

Bitwise negation (unary), denoted by ".N."; e.g., ".N. A". Each
bit of the result 1is the negation (complement) of the

corresponding bit of the operand.

Bitwise '"and" (binary), denoted by ".A."; e.g., "A .A. B". Each
bit of the result is the "and" (conjunction) of the two

corresponding bits of the operands.

Bitwise "or" (binary), denoted by ".V."; e.g., "A .V. B, Each
bit of the result is the "or" (disjunction) of the two
corresponding bits of the operands.

Bitwise *"exclusive or" (binary), denoted by ".EV."; e.q.,
“A LEV. B", Each bit of the result is the "exclusive or"
of the two corresponding bits of the operands.

The_ bitwise shift operations:

The first operand value is treated as a bit string. The
second operand must have an arithmetic mode or *'BIT' mode; its
value is converted (if necessary) to an integer value, which
must be non-negative and is used as the shift count. The result
is a new value; neither operand is affected.

Bitwise-logical left shift and right shift (binary), denoted by
n,.LSs." and ",RS.", respectively; e.g., "A .LS. J%,
"A .RS. J". The 1st operand value is shifted 1left (or
right) by the . number of bit positions specified by the
shift count. If the shift count is negative the operation
is undefined. The bit string stays the same length; bits
shifted off either end are lost, and vacated bit Fpositions
are filled with 0 bits.

Bitwise-arithmetic left shift and right shift (binary), denoted
by "“,.LSA."™ and “.RSA.", respectively; e.g., A .LSA. J",
A _R3A. J". The first operand value is treated as a
binary representation of a signed integer. It is shifted
left (or right) by the number of binary digits specified by
the shift count. If the shirft count is negative the

pert I -- Description «f the MAD/I Language

r—
[

o= /== T

2 ¥
e

-

-

L9

Section 4: Expressions 75

operation is undefined. The binary integer stays the saae
length; it 1is shifted so as to preserve its siqn, and
et fect multiplication (or division) by a power c¢i two.
Digits shifted off either end are lost.

4.2.5 Character-string operatjons

Concatenation (binary), denoted by "(|" and ®“.CONCAT."; e.g.,

“A || B"™, "A LCONCAT. B", Both operands wmust be of
character-string modes: 'CHARACTER' or °'VARYING CHARACTER'.
The result is a value -- the 1st operand value concatenated
vith (followed by) the 2nd operand value. The length of
the result 1is the sum of the (current) operand lengths.
The result mode is 'CHARACTER' if both operands are of
'CHARACTER' mode, and *VARYING CHARACTER' otherwvise.

6__Selection operatjons

Selection by component name (binary), denoted by "$"; e.qg.,

"A § ONAME™, The 1st operand must be a reference of a
structure<d mode allowing named components (* COMPONENT
STRUCTURE* or ‘'ALTERNATE!'). The 2nd co¢perand sust be a
component name which names some component of the Ist
operand. The result is a reference of the named coaponent;
its mode, length, and other attributes are obtained fronm
the subtype-decln part of the component declaration.

Selection by subscript value (n-ary), denoted by ".TAG." or

implied by the syntactic context " expression ("; e.g.,
“A .TAG. I", "A(I)"™, "A(I,J)", " (EXP) (K)". The 1st operand
must be a reference of a structured mode allowing numtered
components (*FIXED ARRAY', ‘'VARYING ARRAY', ‘*COMPCNENT
STRUCTURE', 'ALTERNATE'). The remaining operands must have
values convertible to integers (arithmetic or 'BIT*' modes),
and are interpreted as an ordered set of subscript values.

If the 1st operand has 'COMPONENT STRUCTURE®' or
'ALTERNATE' mode, there must be exactly one subscript. The
integer subscript value must be at least 1 and not greater
than the number of declared components. If the subscript
expression is a constant (with possible sign), then the
mode and other attributes of the result are obtained froms
the subtype-declia in the component declaration. If the
subscript is pot a constant, the attributes of the result
cannot be synthesized by the compiler; then the attritutes
are considered "undeclared", and are usually attached with
an .ASTYPE. or .ASTYPEOF. declaration.

If the 1st operand has an array mode, there nmust be
exactly as many subscripts as the array's dimension

Part I -- Description of the MAD‘I Language

76 Section 4: Expressions

attribute specifies. Each integer subscript value must be
in the range dzfined by the corresponding lower and upper
subscript bounds; otherwise the result is undefined. The
mode and other attributes of the result are obtained froa
the subtype-decln in the mode declaration of the array.

In any case, the result is a reference of the selected
component.

substring selection (ternary), denoted by ".TAG." or implied by
the syntactic context " expression ("; e.g., "CH(I)",
“"A .TAG. (I,d)", "CH(I,J)". The 1st operand must have a
character-string mode ('CHARACTER' or *'VAKRYING CHARACTER'),
and may be either a reference or a value. Its value is the
character string (possibly null) in which a substring is to
be selected. Let S denote the string and let @ be the
current string length. The 2nd and 3rd operands must have
values convertible to integers. Let i and k be the integer
values of the 2nd and 3rd operands, respectively; these are
interpreted as the position and 1length of the desired
substring. We require that §>0 and k20. The 3rd operand
may be omitted; if it is, k=1 is assumed. The 3rd operand
may also be the special symbol # ; if it is, k=m-j+1 is
assumed. If ij>m or if J+k-1 > m, the operation is
undefined. Othervise the substring is S(j) -- S(j¢+k-1).
The result is a reference or value according as the 1st
operand 1is a reference or value. If the 3rd operand
expression is an integer constant or omitted, then the
result is 'CHARACTER' mode vwith length k; otherwise the
result is 'VARYING CHARACTER' mode, with current length k.

Procedure-call (n-ary) is denoted by ".%"; e.g., "F.X%,
"G. (X,Y)". The 1st operand must have either 'ENTRY POINT' or
'ENTRY NAME' mode; it may be either a reference or value. This
operand identifies a procedure entry point to be called. 1The
remaining operands (if any) may be references or values; they
are the actual parameters to be passed to the procedure. Those
parameters which are values are held in temporary storage, and
are replaced by references of their allocated storage.

There are also two phrase keyvwords which may appear after
the actual parameter 1list; these are 'ERROR EXIT' and °*SAVE
CODE', and are used to examine a possible auxiliary “return
code" from the called procedure. ‘ERROR EXIT' introduces a list
of labels; the labels denote places to “go to" for various non-
zero return code values. 'SAVE CODE' must be followed by an
'INTEGER LONG' variable; it is used to save the return code for

later reference.

Fart I -- Description of the MAD/I Langquage

ts

|

&4

a.d

t——-

rn——-‘

S e S

Section 4: Expressions 77

Examples:
RANDON.
Fo (X)
SORT. (N,VA,VB)
GETLINE. (LINE *ERROR EXIT* L1)
PN. (P,Q *ERROR EXIT®' L1,L2 *SAVE CODE*' RC)

The procedure-call proceeds as follows:

(1) Evaluate the 1st operand expression to deteraine the
desired entry point.

(2) Evaluate the operand expressions for the actual paraemeters.
Convert each 'ENTRY POINT' result to 'ENTRY NAME' mode, and
assign the current environment information. (The entry
point named pgyst be owned by the current block, but this
cannot be checked by the compiler.) Disallow 'TRANSFER
POINT' mode. Allocate teaporary storage for those operands
vhich are values, and let the actual parameter 1list be

references of the operands.

(3) Save the current prograna position and environment
information, and transfer control to the procedure entry
point, in such a way that execution of a ‘RETURN' will
cause control to be resumed at (4) below.

(4) If a *'SAVE CODE' phrase appears in the procedure call,
assign the return code to the integer variable. (See
Section 14 for iaplementation.)

(5) If 'ERROR EXIT' appears in the procedure call, examine the
return code. If the return code is zero, proceed to (6)
below; otherwvise, transfer control to the statement nanmed
by the k-th 1label if the retura cocde is k, k=1,2,... If
the return code exceeds the nuamber of labels, the action is
undefined.

(6) The result is the value returned from the procedure; its
attributes are obtained from the subtypce-decln part of the
1st operand declaration.

4.2.8 _Conversion_operations

NAD/I provides a number of operations to convert a value of
one mode to a corresponding value of another mode. 1In general,
the result is a pey value, obtained by copying and transforaming
the original value. Most conversions are implied by context and
automatically generated by the compiler. However, the
operations are all binary, and are denoted as a class by the
"_.CONV." operator; e.g., “"A .CONV, ('INTEGER')", This operator

Part I -- Description of the MAD/I lLanguage

78 Section 4: Expressions

requires a parenthesized decln-string as its 2nd operand
expresslon.

The pre-defined conversions are described below. In the
context table, each position represents a potential conversion
from the rov mode to the column mode. A "0" entry means that
the conversion is defined and is trivial; other entries refer to
the text following the table.

o
[

-
[
b o oo o ce on ar oo e

-— s s e e e S o o
-
w
©
=
-]
=3

o]
(7]
-_—ar e o oo e oo de as

" _CONV."| FL
4

FL
FS
IL
IS
PK
BT
BL

mmm>» o

- s GE GES GES Em G e e
|mmoO>»
QOO
QOOoOwm
COUOOUOMmm

o

-————-—4&-—
=

- e e e o - on of
- e e e an e e o o
- e e e G o —

o

(A) The value is extended (or truncated) on the 1low-order end
to the new length.

(B) The value is extended (or trancated) on the high-order end
to the nev length. Truncation of a value not representable
in the nev mode vill produce an erroneous result.

(C) The value 1is converted from decimal to Dbinary, and
truncated (if necessary) to the new length. Information
may be lost if the value is too large.

(D) The value is converted from binary to decimal; the result
is *PACKED® (16).

(E) The value is converted to binary (if necessary), then to
un-normalized floating-long, then normalized, and finally
truncated (if necessary) to the new length.

(F) The value is extended (if necessary), to floating-long,
then de-normalized to align the integral part, then
converted to integer-long, and finally (if necessary)
truncated or converted to decimal.

(6) The bit-string value is interpreted as an unsigned bDinary
integer, and extended with <zeros (if necessary) obn the
high-order end to the nev length.

(H) The bit-string is interpreted as *'FALSE' if all bits are 0,
and as °*TRUE' ottervise.

part I -- [escriptiou ot the MAD/I lLanguage

-4

—a

33

“J

Lo)

-

-

——

-

Section 4: Expressions 79

4.2.9 Assignment operations

Assignment of a value is a binary operation, denoted by
Wg=®s: @,g., "A := B", "VAR := 100". The 1st operand must be a
reference other than a label, and not of ‘TRANSFER POINT' or
'ENTRY POINT' naode. The 2nd operand may be a reference or a
value.

The 1st operand expression is evaluated to produce a
reference. Then the 2nd operand expression is evaluated. The
value of the 2nd operand is converted (if necessary) to the mode
and storage-layout attributes of the 1st operand, and replaces
the value identified by the 1st operand. The result is a
reference of the 1st operand.

Assignment is pre-defined for the following contexts; some
notes are provided to fill in details which are not obvious.

(Arithmetic mode, Arithmetic mode)

(BL, BL) * BOOLEAN'

(BT, BT) 'BIT' -- extend/truncate on left.

(BT, BL) Set all bits 1 ('TRUE') or 0 ('FALSE').
(BT, IL) Express integer as bit string.

(BT, IS) Express integer as bit string.

(C, O YCHARACTER'; extend/truncate on right.
(VC, V() 'VARYING CHARACTER!

(vc, C) Set current length = fixed length.

(C, VC) Extend/truncate on right.

(PT, PT) *PCINTER'

(EN, EN) *ENTRY NAMF?

(*ENTRY NAME', 'ENTRY POINT') The entry name value points
to the entry point, and the current environaent
information is assigned. The entry point must Dbe
owvned by the current block; this cannot (in general)
be checked by the compiler.

(*ENTKY NAME', °‘TRANSFER POINT') The entry name value
points to the transfer point; the environment
information is undefined. The resulting value can be
used ia a 'GO TO', but pot in a procedure call, nor as
an actual parameter.

Part I -- Description of the MAD/I language

80 Section 4: Expressions

4:2.10 OQtheg operations

Length of a value (unary), denoted by ".LN."; e.g., "“.LN. B",
The operand may be a reference or value of any mode other
than 'TRANSFER POINT®' or °*ENTRY NAME'. The result is a
value of 'INTEGER LONG' mode -- the "length" of the operand
value. For 'VARYING CHARACTER' operands, the "length" is
the current length of the character string.

Association of storage (binary), denoted by ".ALLOC."; e.g.,
"A .ALLOC. B". The 1st operand expression must be a
variable of based or formal parameter storage class, and of
any mode. The 2nd operand must be a reference or value of
'POINTER' mode. The storage reference determined by the
pointer value is associated with the variable, so that the
variable now has this reference as its result. If the
pointer value equals '*NULL PT*, then the variable becomes
"not allocated", and its result is undefined.

Create pointer (unary), denoted by ".PT."; e.g., ".RT. B". The
operand must be a reference (of any mode). The result is a
value of 'POINTER' mode corresponding to the reference;
i.e., a pointer to the operand.

Indirect reference (unary), denoted by ".IND."; e.g., ".IND. E".
The operand must have 'POINTER' mode; its value must be a
non-null pointer. The result is the reference determined
by the pointer; the mode and storage layout attributes are
obtained from the subtype-decln part of the pointer
declaration.

Create a pointer constant (unary; compile-time only), denoted by
", PTCON."; e.g., ".PTCON.(B)". The operand expression must
be an identifier, and must be enclosed in parentheses. The
result is a constant of 'POINTER' mode corresponding to the
reference of the identifier.

Create an entry-name constant (unary; compile-time only),
denoted by Y.ENCON."; e.g., ".ENCON.(B)". The operand
expression must be an identifier, and must be enclosed in
parentheses. The result 1is a constant of 'ENTRY NAME'
rode; it points to the entry point named by the identifier,
but it does not carry environment information.

Pact I -- Duscription of the MAD/I Language

-

',

e S S

r‘b;\)'

p-)

&

b

e

WIS PR

Section U4: Expressions 81

4.3 'Qpe;ato;_g;gcedeggg_ggd Class

MAD/I operators are symbols which denote operations (see
Sec. 2.2.4). The ofperations themselves are described in the
preceding subsection; we now describe the syntactic properties
of operators.

Every operator has a syntactic class and a precedence
level, The syntactic class tells hov the operator is vwritten
with respect to its operand expressions:

Prefix: before its operand expression(s).
Postfix: after its operand expression(s).

Infix-left: between its operand expressions;

associates 1left-to-right with operators of
equal precedence.

Infix-right: between its operand expressions;
associates right-to-left with equal-

precedence operators.

An operatnar's precedence level (precedence) determines its
syntactic "binding strength" relative to other operators. An
expression appearing between two operators is "bound" as an
operand expression to one operator or the other as follows:

If the operators have different precedence levels, the
expression is bound to the higher-level operator.

If the operators have the same precedence level, +they
must be either both infix-leit or both infix-right.
The expression is bound to the left operator if they
are 1infix-left, and to the right operator if they are
infix-riqght.

To avoid the possibility of ambiguous constructions, a rule 1is
applied to all operators, both pre-defined and user-defined:

All operators having the same precedence level must
have the same syntactic class.

Also, parentheses may be used as grouping marks in the usual
way: one or more expressions (separated by commas) may be
enclosed in parentheses, forming a "group" of expressions which
is bound as a unit. This is often necessary in denoting n-ary
operations; e.g., ARRAY .TAG. (I,J,K) .

Part I -- Description of the MAD/I Language

82 Section 4: Expressions

The folldwing table shows the pre-defined operators,
arranged from highest precedence level to lovest precedence
level, and the syntactic class at each level. (There are mno
pre-defined postfix operators.)

INFIX|INFIX| |

LEFT|RIGHT |PREFIX| OPERATORS
X | [| .TAG. . @ .CONV. .ASTYPE. .ASTYPEOP.
| | | .
| I X | .ABS. .LN. .PT. .IND. .PTCON. .ENCON.
| i |
) G | [| .LS. .RS. .LSA. .RSA.
| | |
| I X | .N.
| | |
x | ' ' -Ao
| [|
X | | | Ve .EV.
| | |
(D G | | *x*
| | |
| | X | .NEG.
| | |
X 1 [| * / .REM.
| | |
X | | | ¢+ -
| | | .
X | ' i 1l +CONCAT.
| [[
X | | | = == L.NE. > D>= <K (=
| [[
l ' x | - .NOT.
| [|
X 1 | | & .AND.
| | |
) G | { | .OR. .EXOR.
| | |
) G [| .THEN.
| | |
X | | | <ECV.
l [|
I X | | := ALLOC.

Part I -- Description of the MAD/I language

i

I

-

191

Section 4: Expressions 83

4.4__Syntax of Expressions

The set of MAD/I operators is extensible, and new operators
may introduce new precedence levels between the existing levels.
Therefore we must resort to uncorventional methods to present a
syntax which will describe all possible expressions.

Let precedence levels be denoted by special variables: 1i,
j, k, 1. Let notations such as ">j" mean "any level higher than
level j". Also let the notation "i%j" mean "the lower of levels
i and j", and let "+" denote the highest possible level.

Associate with syntax variable "exp" (for "expression") two
precedence 1level parameters: the precedence "viewed from the
left", and the precedence "viewed from the right". Thus, the
syntax notation "exp(i,j)" will denote an occurrence of an "exp"
with precedence levels i and j as viewed from the 1left and
right, respectively.

Also define syntax variables for the operators, with their
precedence levels as parameters. Thus, "prefix-op(j)" denotes

an occurrence of a prefix operator with precedence level j, and
similarly for postfix-op(j), infix-L-op(j), and infix-R-op(Jj) .

In this extended notation, vwe nov define the formal syntax
of MAD/I expressions. An example rule is explained below.

exp (+,+) = constant | identifier | embedded-statement
| (list , exp)

exp (+, k) = prefix-op(j) exp(>j,k)

exp(i,>j) postfix-op(J)

exp (i®j,+)

exp(i®j,3°k) = exp(i,23j) infix-L-op(j) exp(>j,k)
exp(i®j,j°k) = exp(i,>j) infix-R-op(Jj) exp(2],Kk)
expression = exp

For example, the syntax rule
exp (+,3°k) = prefix-op(j) exp(>3j,k)

means: "A prefix operator with precedence level j, followed by
an expression with any left-precedence greater than j and any
right-precedence k, forms a composite expression with left-
precedence "highest" and right-precedence equal to the lower of
j and k". Referring to the operator table in Section 4.3, vwe
see that this rule can combine ", NEG." and "A**B" to get
" _NEG.A**B" but it canhot combine " NEG." and "A+B" to get
" _NEG.A+B",

Part I -- Description of the MAD/I Language

T s ol]

g4 Section 5: Statements

Each non-empty statement in the language falls into one of
five classes: (i) simrle statements, (ii) compound statements,
(iii) prefix statements, (iv) 1list statements, and (v)
declaration statements. Unless othervise indicated by the
interpretation of a statement, its successor (at run time) 1is
the statement written immediately after it. Two adjacent
statements are always separated by a semicolon, but the
semicolon is not a part of the statement it follows.

Eopty statements

———

A statement can also be "empty" (consisting of no symbols).
An empty statement specifies no computation; it can, however, be
labeled.

Syntax: statement = empty

Labeled statements

Any statemecat can be labeled, by prefixing it with an
identifier and a colon; the resulting form is itself a
statement. Labels on declaration statements are permitted.

Syntax: statement = identifier : statement

Simrle_statements

The simple statements have two general forms:®
(1) a single expression;

(2) a simplc-statement keyword, possibly followed by one or more
expressions separated by commas or phrase keywords (a
“phrase list").

In case (1), the expression is simply evaluated; it has no
effect other than the effects produced under the rules of
expressions; the result is not saved. Such a statement is
usually an assignment, an .ALLOC. expression, or a procedure

call.

In case (2), the exact statement form is determined by the
statement keyword arnd its associated statement definition. For

Part . —-- Description of the MAD/I Language

P

‘-

,.

-

-—

Section 5: Statements’ 85

each statement keyword, there is a fixed number of 'exptessions
which may follow.

Syntax: statement = expression
| simple-stmt-keyword [phrase-list])

phrase-list = list { , | phrase-keyvword } expression

Examples: A := B
FN. (X,Y)
'GO TO' LB

Coppound_statements

A compound statement is simply a sequence of statements
separated by semicolons and bracketed by a compound-statement
keyvword and an end keyword. The resulting form is itself a
statement.

Syntax:
statement = compound-stmt-keyword stmt-seq end-keyword
stnt-seq = list ; statement

Example:
'BEGIN' A := B; B := C YEND'

Prefix statements

Each prefix statement form begins with a ‘'prefix part",
consisting of a prefix-statement keyvword and a fixed-length
phrase list, such as:

‘IF' exprn
or
'FOR' desig := exprn, exprn, exprn

For each such prefix part there are tvwo forms of the prefix
statement: (1) the prefix-part followed by a comma and a single
statement (the "short form"); (2) the prefix-part, possibly
followed by a semicolon and a statement-sequence, and ending
with a matching end keyword (the "long form"). The particular
end keyword which "matches" depends upon the statement keyword;
however, the symbol 'END' is a general-purpose end keyword which
may be used to end any long-form prefix statement.

Prefix statements and compound statements may be properly

nested; each occurrence of a long-form prefix statement requires
its own end keyvord.

Part I -- Description of the MAD/I Language

86 Section 5: Statements

Syntax:
statement = prefix-stmt-keyword phrase-list
{ , statement
| {; stat-seq] end-keyword }
Short-form exaaple:
‘IF* A > B, B := A
long-form examples:

(1) 'FOR? =1, 1, I > N;
V(I) :=1I ¢+« 1; W(I) := 0 "ENDFOR"'

(2) 'POR' J := 0, 1, C(J)

0 *ENDFOR'
Note that in example (2), the prefix is followed immediately by
the end keyword; the "scope"™ of the statement is empty.

List statemept

A list statement consists of a prefix followed by a varying
number of eXxpressions. The prefix begins with a statement
keyword; the form of the rest of the prefix depends upon the
particular statement keyword.

Examples:
WRITE' ("317%",1), J, K, L
'PRESET' A:=3, V(1):=1, V(3):=3

'LIST' X(I), Y(I), Z(I)

Declaratjon_statements

Declaration statements have two general forms: the
'*DECLARE' statement and the "inverted" declaration statements.
They have a special syntax, described in Sections 3.6 and 5.9.
Examples:

'DECLARE' A 'INTEGER', (B,C,D) 'FLOATING®

*BOOLEAN' S1, S2, S3

Part I -- Description of the MAD/I Language

&y

=

[S Y
-]

et
-y

?«
$eae

’!

b =

Pl i el

Section 5: Statements 87

5.1__Expression Statements

An expression is also a simple statement. Execution of an
"expression statement" consists of evaluating the expression and
ignoring the result.

Notice that expressions include assignments and procedure
calls.

Examples: V := A + B
o BV .ALLOC. (.PT. V)
SORT. (N, A1, A2, KEY)
A+ B

Part I -- Description of the MAD/I Language

88 Section 5: Statements

5.2__The 'GO_T0' Statement
This {simple) statement has the forn;
'GO TO' S

Here S may be any label or entry point or any expression in
entry name mode. Execution of this statement causes the
computation to continue at the statement whose 1label is the
value of 5.

Examples:

'GO TO' LOOPU

*GO TOY ENTRYB

If the value of S is an entry point (i.e., if it has
appeared in a *PROCEDURE' definition or has been declared °'ENIRY
POINT') a 'GO TO' statement may be used, even if the stateament
it labels is not in the same program. In addition, for entry
points one can get parameter substitutions at the same time by a

*WITH® clause containing a parenthesized 1list of actual
parameters:

'GO TO' S *WITH' (E(V), E(2), —, E(N))

wvhere the expressions E(i) agree in mode and 1length with the
formal parameters declared for the entry point designated by S.

Part I -- Description of the MAD/I Language

=

St

o I

I

b

 go—

= /=

—

Section 5: Statements 89

2.3 _The 'IR' Statement
This (prefix) statement has a prefix of the fora
IF bool-exprn

vhere "hool-exprn" is an expression of Boolean =mode. Thus,
examples of the short fora are:

IF X > Y, *'GO TO*' S1
‘IF* A=B6I=J, Q:=R + .ABS. T
The general long fora is:
'IF' bool-exprn ; stat-seq
(list (: °‘OR IF' bool-exprn ; stat-seq}]
[: 'OR ELSE*'; stat-seq] *ENDIF'
stat-seq = list ; statement
The *'OR IF' groups are optional; any nuamber of thea may be
used. The ‘'OR ELSE' group is likevise optional, but only one

'OR ELSE' may appear in a given long-fora ‘'IF* statement. 'OR
ELSE' may be abbreviated as 'ELSB'.

The effect of this statement is to select for execution one
of the statement sequences "stat-seq". Specifically, the first
Boolean expression "bool-exprm® from the left found to be ¢true
causes the execution of the immediately following "stat-seg"™.
Here, 'OR ELSE' can be interpreted as "“always true®, i.e., as
'OR IF* *TRUE®.

Example long-form *'IF*' statements:
IF A =B; S =T ¢+ J; I := I-1; 'GO TO' M *END IP®

SIF* (< S; I := I+, *OR IF* Q > S; I := I-1;
'OR ELSE*'; °'GO TO®' ST 'ENDIPF'

YIPF* J=0; D(J):=1; *ELSE*; D(J):=D(J) +1 *ENDIF®

Part I -- Description of the MAD/I language

90 Section 5: Statements

3.4__The 'POR' Statesent

The 'FOR' statement is a prefix statement for specifying
iterations. The statement-keyvord and phrase-list are:

'FOR' desig := exprn2, exprn3, exprnl

vhere "desig" produces a reference of the iteration value,
"exprn2® gives the initial value, "exprn3" gives the incresent
value, and ‘"exprnd" is a Boolean expression to test for
completion. The mnodes of exprn2 and exprn3 must be such that
"desiq := exprn2" and "desig := desig ¢ exprn3d" are legitimate
exnrassions. The end-keyword for the 'FOR' statement is
'ENDFOR!.,

The interpretation of the 'FOR' statement with scope "stat-
seq" is as if it had been written as follows:

desig := (exprn2);
L: *'IF' ~ (exprnd);
stat-seq;
desig := (desig) ¢+ (exprn3);
'GO To* L
'ENDIF?

vhere "L" represents a local label. In other wvords: the
designator is evaluated to get the reference for the iteration
value; the iteration value is initialized to the value of
exprn2; as long as the value of exprnd is 'FALSE', the scope
stmt-seq is executed, folioved by incrementing ¢the iteration
value by the latest value of exprn3. Note that if exprnd is
'TRUE®' on the first test, the scope is not executed at all.

Examples:

(1 'INTEGER®' J,N;
SuUM := 0.;
'FOR* J := N, -1, J < 0, Y := SUM * X + C(J)

(2) ‘POR* I := 1, 1, CH(I) =", | I > K,
IF I > K, 'GO TO' NOCOMEMA

(3) ‘FOR' I := 1, 1, I > N;
J := 0;
'‘FOR* S({I) := 0, B(I,Jd), (J ¢s=J + 1) >N
*ENDFOR?
*ENDFOR!
fart 1 -- Description of the MAD/I Language

71

id

[XY

. s

[

.-

{:

Section 5: Statements 91

2:2__The ‘FOR _VALUES®' Statement

The °*FOR VALUES®' statement is another prefix statesent for
specifying iterations. The prefix has the fora:

'POR VALUES®' desiqg := (list , exprn)

vhere "desig" designates the iteration value, and each "exprn"
in the 1list has a mode such that "desig := exprn® is a valid
assignaent. The end keyvord for the 'FOR VALUES' statement is
ENDFOR".

The interpretation of the *FOR VALUBS' statement is as
follovws:

(1) Evaluate "desig" to deteraine the iteration value.

(2) Set (local variable) i equal to 1.

(3) Evaluate the i-th "exprn"™ in the list, and let its value
(vith the appropriate conversion, if necessary) replace the
iteration value.

(4) Execute the scope (statement or stateament sequence). let
normal sequencing proceed to (5).

(5 1If § is equal to the nuamber of %exprn"s in the 1list, the
'FOR VALUES' statement is finished; othervise, increament j}
by 1 and go back to (3).

Exaaples:
(1) *FOR VALUES* K := (0,1,5), A(K) := 0
(2) 'POR VALUES® CH := (®WA®, wxw, uQuw nqn) .
J := SCAN. (LINE, CH);
*IF' CH = nxn, JX 3= J
ENDFOR?

Part I -- Description of the MAD/I language

P T

92 Section 5: Statements

5.6__The 'VALUE' Statement

This (prefix) statement has a prefix of the form

'VALUE®' V := E
vhere V is a designator, and E is an expression such that the
assignment V := E is legitimate. A shorter form of the prefix
is

'VALUB' V
in which case the initial value of V is the value it had Jjust
before execution of the *VALUE' statement. The end keyword is
YEND VALUE®.

An example of the short form is:
VALUE S := 0., *FOR' I := 1,1,I > N,
S := S + A(I)

An example of the long form is:

'VALUE' TRACE := 0.

'FOR' I := 1,1,I > N;

*FOR' J := 1,1,J > N;

C(1,J) := 0.;

*FOR' K := 1,1,K > N,

c(1,J) :=C(1,J) + A(I,K)*B(K,J) 'END FOR' ;

TRACE := TRACE ¢+ C(I,I)'END FOR' FEND VALUE'

The interpretation of the 'VALUE!' statement is that a value
is produced for V as a result of the execution of the scope.
This prefix statement may now be enclosed in parentheses and
used as an embedded statement, since it has produced a value.
The expression E in the prefix is am initial value for V. Thus,
in the long-form example above, if N = 0, then none of the scope

would actually be executed (since I > N), and the value produced
(wvhich in any case is the final value of TRACE), is 0.

Part 1 -- Description of the MAD/I Language

=3 =

(v]
vy §

—

Wi memg
)

[

——t

Y

L

—d

=

Section 5: Statements 93

S.1 _Procedures

5:1.1 _The 'PROCEDURE' Statement
This (prefix) statement, called a procedure definition, has

the following syntax:

procedure = proc-prefix; list ; statement *END PROCEDURE'
proc-prefix = 'PROCEDURE' list , entry-spec
entry-spec = identifier-list [.][formal-parameters]
fornal-ﬁarameters = (list , identifier)
A typical prefix would be:
*PROCEDURE' (J,K,L). (X,Y,Z,W)

vhere the first part specifies entry points for the procecure,
i.e., J, K, and L, and the second part specifies formal
parameters to be associated with each of those entry points. 1If
there 1is only one entry point, the parentheses around it may be
omitted. If there are no formal parameters, the second pair of
parentheses may be omitted. The period is always optional in a
procedure prefix. Thus, the prefix

*PROCEDURE' (F,G).(X), H.(X,Y), L.

specifies that F and G are entry points with formal parameter X,
that H is an entry point with parameters X and Y, and that L is
an entry point with no parameters.

The short form of the 'PROCEDURE! statement differs
somevhat from the wusual short form; it 1looks much like an
assignment expression:

procedure-short =
'*PROCEDURE' identifier [.] formal-parameters
:= expression

where "expression" is any expression (possibly an embedded
statement). As an example vwe have:

'PROCEDURE' REM. (A,B) := A - (A/B)*B

The long form uses the wusual sequence of statements,
separated by semicolons and terminated by the end keyword
'END PROCEDURE'. Each entry point occurring in the prefix may
appear as a label on some statement in the scope of the
'PROCEDURE' prefix. If no such label appears on any statement,

Part I -- Description of the MAD/I Language

94 Section 5: Statements

it is as if the label vwere on the first executable statement
vithin the definition of the procedure. Procedure definitions
may be properly nested within other procedure definitions.

procedure statement in a statement sequence behaves as an empty
statement in that sequence.

The formal parameters of a procedure are 1local variables
which are dynamically "bound" to their storage references when
the procedure is entered. All formal parameters declared in the
procedure prefix are variables usable throughout the procedure
body. For each formal parameter, however, only certain entry
points cause it to be bound -- namely those entry points whose
"entry-spec"s mention that formal parameter.

A formal parameter, like any other variable, acquires mode
and storage-layout attributes. These may be declared (within
the procedure) in any cf the ways described in Section 3.

Whenever (at run time) a procedure is entered at a given
entry point, the formal parameters specified for that entry
point are considered in the order declared and bound to the
actual parameters (arguments) received from the calling
procedure. There must be at least as many actual parameters as
formal parameters; each actual parameter must be a reference of
the same_mode as the corresponding formal parameter. Generally
the storage-layout attributes must also agree, but there are a
few permissible exceptions:

'CHARACTER' mode: The length of the actual parameter may be
greater than the length of the formal parameter.

'VARYING CHARACTER' mode: The maximum length of the actual
parameter may be greater than that of the formal parameter.

Array modes: The formal parameter may optionally be declared
with an "array-suffix" in which all the "bounds" entries
are the special symbol # . 1In this case, the numkter of
dimensions of the actual and formal parameters must agree,
but the bounds values and storage spacing of the formal
parameter are taken from those of the actual parameter (cf.
Section 3.1%1.2.1)., For example:

'DCL' AR 'FIXED ARRAY' (#,%) 'FLOATING'
However, for 'FIXED ARRAY' parameters, greater efficiency

can often be realized if the actual bounds are known and
declared in the procedure.

Part I -- Description of the MAD/I Language

-

Pt

-

-

Section 5: Statements 95

S5:7.3__Procedure Returns

The execution of a procedure ends when any of ‘'RETURN',
'RETURN TO', or 'END PROCEDURE' is executed. The forms of these

statements are:
(1) 'RETURN' [expression] [,return-code])

where return-code is the return code value and the expression is
the result value of the procedure. If the return-code is
missing, a return-code of zero is given. If a return-code is
given, it must be a non-negative integer expression. The
"return” is made to the point immediately after the last "call"
was executed.

(ii) 'RETURN TO' S

where S is (1) a formal parameter of the current procedure, and
(2) has 'ENTRY NAME' mode and has an actual parameter value
which is an entry name for some procedure whose call preceded
the current one in the currently effective chain of "calls".
For example, suppose procedure A1 has called A2, which has
called A3, each call passing as a parameter the entry name L in
A1. Then A3 might contain the statement:

'RETURN TO' S

where S is a formal parameter for which L is the actual
parameter. The next statement executed after the 'RETURN TO'
statement is that denoted by the value of 1.

S also can be a variable of 'ENTRY NAME' mode which has
been assigned a value by means of an assignment operation
located in the procedure which owns the associated entry point.
At the time the 'RETURN TO' is executed, the entry name variatle
must have a value which points to a currently active block; that
is, the environment information must still be valid.

The execution of 'END PROCEDURE' , which ends the scope of

a procedure, is permissible and is equivalent to the execution
of 'RETURN' with no result value and no return-code specified.

Part I -- Description of the MAD/I language

96 Section 5: Statements

5.8__Input/Qutput Statements

There are several statements for specifying input/output
operations; they are mentioned below. For a complete treatment
of input/output, refer to Secticn 6; the statements are
described in Sections 6.8 and 6.9.

YOPEN!'

*CLOSE!

'READ DATA®

'WRITE DATA!

YREAD!

'WRITE®

"READ UNCONVERTED'
"WRITE UNCONVERTED'

Part I -- Description of the MAD/I Language

L

-

| S—

Section 5: Statements 97

5.9__Declaration Statements

The statements in this section have a purely "compile-time"
effect; at run time, they act as "empty" statements.

The 'DECLARE' statement and the inverted declaration
statements are descrited in Section 3.6; refer to that section.

The 'DECLARE' statement (abbreviation 'DCL') -- Section
3. 6. 1.

Inverted declaration statements -- Section 3.6.2.

The 'DECLARE DEFAULT' statement (abbreviation *DCLD') is
used to declare default mode and storage class attributes. It
can also be used to control the scope of identifiers referenced
but not declared.

Syntax: 'DECLARE DEFAULT' decln-string
This statement has the same effect as the statement
'*DECLARE' 'DEFAULT' decln-string

which is described in Section 3.7.2.

Example: 'DECLARE DEFAULT' 'INTEGER!

Part I -- Description of the MAD/I Language

SR . meeema.

98 Section 5:; Statements

2210 _ The 'BEGIN® and 'BLOCK: Statements

The 'BEGIN' -nd 'BLOCK' statements are compound statements,
consisting of a sequence of constituent statements bracketed by
the compound-statement keyword and an end keyword.

Syntax: statement = 'BEGIN' stmt-seq 'END'
{ 'BLOCK' stmt-seq 'END'

The 'BEGIN' statement serves only to treat the statement
sequence as a single statement -- it has no other effect.
Exccution of a 'BEGIN' statement mnmeans execution of the
statement sequence.

The 'BLOCK' statement is the same as the 'BEGIN' statement,
except that it forms a new block (see Section 7). The scopes of
names and declarations appearing within the *BLOCK' statement
are determined with respect to this block.

Examples:
'BEGIR' T := a; A := B; B := T '"END!

'BLOCK®
*EXTERNAL' (B1,B2,B3) 'BOOLEAN';
ANYB := B1 | B2 | B3

YEND?

Part I -- Description of the MAD/I lLanguage

L]

]

gy

prm———— ["]
H . [E .

e B et

ey [passy

—

—

| Gt et et - ol SO S

—

Section 5: Statements 99

2.11__The 'PRESET' Statement

'PRESET' is a statement used to specify initial values of
variables. An "“initial value" is a value assigned to a variable
at the time storage is allocated for the variable. Stcrage for
'STATIC' variables is considered to be determined at compile
time and allocated just prior to run tieme. Only °*STATIC®
variables which are not 'EXTERNAL' may be preset.

Syntax:
statement = °*PRESET' ljist , pre-assign

pre-assign = pre-var := (list , init-value }
pre-var = variable [list ((list , integer) }]
init-value = const-exprn

| replic-exprn

| empty

const-exprn = constant
| - constant-exprn

replic-exprn = unsigned-integer (list , init-value)
Exanmples:
of pre-var: BCX
AA(1,-3,2)
CC(2,1) (4) (17)
of const-exprn: 20
"Haw!®

-4 @ ('INTEGER SHORT®)
« ENCON. LOGTAN

of replic-exprn: 3(1.2, 7, “ABWw)
300 (0)
20(1.0,8(0.0),2.0)

of preset statements:

*PRESET' A := 0, B := 0, CH := "0123"

'PRESET' V(1) := 2., V(4) := 0., V(10) := 10.

*PRESET' AB(1,1) := 1, 1, 2, 0, AB(2,1) := 4(0)

Interpretation

A pre-var specifies either a variable to be preset or a
component of a variable at which presetting is to start. The

Part I -- Description of the MAD/I Language

100 Section 5: Statements

list of init-value's folloving the ":=" spccifies a seguence of
constant values to be pre-aussigned to the preée-var. If the pre-
var is a variable of a priritive mode, there should be ohly one
init-value in the 1list. If the pre-varc t: an array or
component-structure variable, then presetting begins with the
1st component and continues with successive colponents at the
same structural level. If the pre-var is a coipondiit of such a
variable, presetting begins with that component and continues as
above.

An empty init-value causes the corresponding component to
be skipped without being preset. A "replic-exprn® is treated as
an abbreviation for the enclosed list of init-value's written
out "unsigned-integer" times. The unsigned-integer hust be non-
zero. For example,

2(1,2, ,4)
is equivalent to
1,2, ,4,1,2, ,4.
The initial values aust have the same mode as their

corresponding ¢ariables or components; no autoshtic conversion
is performed.

Part 1 -- Cescription of the MAD/I Language

fro———— :’ [7= F) [>
& o e [o]

Section 5: Statements 101

2232 The °DECLARE CSECT® and °DECLARE PSECT' Statesents

DECLARE CSECT' and °'DECLARE PSECT' are both sisple
statements used to control the names given by the compiler to
sections of the object module.

Syntax: statement = 'DECLARE CSECT' identifier
| *DECLARE PSECT' identifier

The compiler norsally produces an object prograam segregated
into two sections: (1) a section (®"csect®) which is never
sodified as the prograsm is run and is "shareable® by different
recursion levels in the task and by different tasks in the
operating system, and (2) a section (“psect”) which contains all
the rest -- the variable values and non-shareable text. The
programmer may occasionally need to specify the names given to
these sections.

These statements cause the specified identifier to be used
as the name for the specified section. It is the prograsmer's
responsibility to make sure that the name is acceptable to the
operating system in vhich the object progras will be run.

Part I -- Description of the NAD/I Language

102 Section 5: Statements

3,13 __The *ALLOCATE' and 'DEALLOCAIE® Statements

These are sisple statemsents which dynasically allocete and
de-allocate storage for variables of based storage class.

Syntax: statement = 'ALLOCATE®' variable [, exprn])
| 'DEALLOCATE' variable

The 'ALLOCATE' statement specifies a based variable to
receive a nev allocation. The "exprn®, if included, must be
integer-valued, and specifies the number of contiguous storage
locations (bytes) to be allocated; if the expression is omitted,
the length attribute (Sec. 3.2.1) of the variable is used. The
storage is acquired (from the operating systes) and associated
vith the based variable. 1If storage was already allocated for
that variable, the variable's reference of that storage is lost
(i.e., not saved or automatically freed).

The 'DEALLOCATE' statement is used only to de-allocate the
storage allocated to a based variable by an ‘'ALLOCATE’
statement. The specified variable is set to "“not allocated”,
and the storage previously allocated for it is freed (returpned
to the operating system). If the variable has storage wvhich vas
allocated by means other than the 'ALLOCATE' statemaent, then the
action of °*DEALLOCATE' is undefined.

Examples:
"ALLOCATE* BLOCK
'DEALLOCATE® BLOCK
YALLOCATE' MATRIX, M*N*y

'DEALLOCATE® MATRIX

Part I -- Description of the MAD/I Language

LN

| S)

44

ru——

P ™

Section 5: Statements 103

2234 ___The 'BREDIMENSION® Statement

'REDIMENSION' is a statement for dynamically modifying the
dimension attributes of 'VARYING ARRAY's at run time. Refer to
Section 3.1.2.1 (Array modes) for information on 'VARYING ARRAY'
mode.

Syntax: statement = 'REDINENSION' ljist , TO-phrase
TO-phrase = desig 'TO' (list , run-bounds)
run-bounds = [exprn ...] exprn

Example:
‘REDIMENSION®* AA *'TO* (M,0...N)

In the syntax above, "desig" denotes a designator, which
sust have *VARYING ARRAY' mode. In each TO-phrase, the nuater
of "run-bounds"s sust equal the declared number of dimensions of
the array designated by "desig". Also, "expra' denotes any
expression vhose value is convertible to an integer. The
(optional) 1st exprn specifies the 1lower bound for that
subscript position; if omitted, a lower bound of 1 is assused.
The 2nd exprn specifies the corresponding upper bound.

For each TO-phrase, the run-bounds expressions are
evaluated, and their values are converted (if necessary) to
integers. The dimension attribute of the array denoted by the
designator is changed to reflect the new subscript bounds.
Hovever, the storage allocated to the array is not changed;
therefore, if the array is in an allocated state (i.e., storage
is allocated for it), then the storage requirement of the re-
dimensioned array Basust not exceed the amount of storage
allocated.

Por example, if we had declared:

'DECLARE®' (V1, V2) °'VARIABLE ARRAY' (100),
AD 'VARIABLE ARRAY' (30,20)

then ve might write re-dimensjion statements like these:
'REDINMENSION® V1 'TO' (N)

'REDIMENSION® V2 'TO* (0 ... N=-1),
AD 'TO' (0...K, Le1)

Part I -- Description of the MAD/I Language

104 Section 6: Input/Output

Section 6: Inpyt/Oytput

Before discussing the input/output statements in detail,
several general concepts should be defined.

6.1__Data_gets, Records, and Files

A data_set is a collection of data external to the progranm.
Ipput__activjty transmits data from a data set to a progranm.
SELBBL_QEELXIEI transmits data from a program to a data set. A

ata set consists of discrete pecords, each consisting of zero
or more bytes. An input activity, then, transmits one or wmore
vhole records from a data set to a program while an output
activity transmits one or more whole records from a program to a
data set. An input activity is also referred to as reading
vhile an output activity is also referred to as yriting.

A fijle is a usage of a data set. A file can be opened
either explicitly or implicitly. A file is opened expljicitly by
means of an ‘'OPEN' statement. In this case the file is
characterized by the value of the variable of 'FILE NAME' node
specified as a part of the 'OPEN' statement. Every explicitly
opened file is a unique file even if it uses the same data set
as another file. A file is opened jmplicitly through the
execution of an input/output statement (other tham °'OPEN') which
references it with no prior implicit opening of the file. The
file referenced is deduced from the data set name given in the
input/output statement and the manner in which the data set name
is specified. An implicitly opened file is characterized by the
value of a variable of 'FILE NAME' @wmode owned by the systen
input/output support software. This filename variable cannot be
referenced by name, but only implicitly through the
specification of the same data set name in the same manner as
when it was 1implicitly opened. This will be <clarified in
Section 6.3. Note that several files may be open which use the
same data set. The behavior in this case is dependent upon the
system and the type of data set organization.

Part I -- Description of the MAD/I Language

Section 6: Input/Output 105

6.2 _Types of Input/Output Activities

There are four types of input/output activities supported
in MAD/I: data-directed, 1list-directed, format-directed, and
unconverted. This section describes the general characteristics
of these transmission modes.

6.2.1 _Data-directed Transmission

Data-directed transmission permits the user to read or
write self-defining data.

Input: The data are in a form similar to a 'PRESET' statement,
consisting of a 1list of designators, each followed Ly an
assignment symbol (or equality symbol) and a 1list of constant
values to be assigned. The input for a single data-directed
input transmission is free-form and may span one or more whole
records. The transmission is terminated by a semi-colon in the
last input record. A typical input record is:

A:=-3.2, B:="S", COMPLXN$®R:=1.5, Z(2):=1,,5(2);

Output: The data values to be transmitted are specified by a
data-list in the output statement. The data are placed into one
or more output records and consist of a 1list of designators,
each followed by the value referenced. If a data-list
expression is not a designator (e.g., X+3), then three asterisks
(***) are printed in place of the designator. The records
produced by a data-directed output transmission are suitable as
input records for a data-directed input transmission; the iteas
identified with three asterisks are ignored.

6.2.2 list-directed JTransmissjion

List-directed transmission permits the user to specify the
designators to which data are assigned or from which data are
transmitted, withount specifying the format.

Input; The data are in the form of free-form constant values
separated by blanks or commas. The designators to which the
data are to be assigned are specified by a data-list in the
input statenment.

Output:; The data values to be transmitted are specified by a
data-list in the output statement. Each data item is converted

Part I -- Description of the MAD/I language

106 Section 6: Input/Output

to an external form (according to its mode and value), and the
external forms are concatenated to form output records.

$:2.,3 Format-directed Iransmissjon

Pormat-directed transmission permits the user to specify:
(1) the designators to which data are to be assigned or from
vhich data are to be transmitted, through a data-list, and (2)
the form of the data fields in the records, through a format
specification.

Input; The form of the data in the input records is defined Ly a
format specification. The designators to which the data are to
be assigned are specified by a data-list.

Output: The data values to be transmitted are defined by a data-
list. The form that the data are to have in the output records
is defined by a format specification.

§42;L_ﬂn£9n¥§£&29.1;22§ni§§199

Unconverted transmission permits the user to read or write
information directly, vwith no conversion. The unconverted
input/output statements cause a single record to be transmitted
from or to the data set. The designators to which the data are
to be assigned or from which data are to be transamitted are
specified through a data-list.

Part I -- Description of the MAD/I language

-

-

e

-

’—a

tt

§raa

-

==

Section 6: Input/Output 107

6.3__Associating Data sets with Files

A data set is associated with a file at the time the file
is opened. The data set name can be specified in five different
vays in either the 'OPEN' statement (for explicitly opened
files) or an input/output statement other than 'OPEN' (for
implicitly opened files.) These five ways are: (i) through a
unit specification, (ii) through a data set name specification,
(1ii) through a character-string specification, (iv) through an
entry-name specification, and (v) through a default
specification. Only one of these five ways can be used in any
one statement.

6.3.1__Unit_Specification

A upit is a name which is associated with a particular data
set through the job control language of the operating system in
which the MAD/I program is being run. The unit is specified
through the 'UNIT' specification in the input/output statement.
This specification can be an arithmetic expression or a
character-string expression. The values of these expressions
are interpreted in a system-dependent fashion.

In input/output statements other than 'OPEN', the unit
specification can also be an expression of 'FILE NAME!' mode, in
which case the named file is used. It must have previously been
opened in an 'OPEN' statement.

All implicit references to files which satisfy the
following two rules will be considered as references to the same

file:

1. All references are by means of a unit specification.

2. Either all references are by means of arithmetic
expressions which compare as equal in value or all
references are by Reans of character-string
expressions which compare as equal in value.

In MTS, the value cf a character-string expression aust be
the name of a "logical I/0 unit". The valid logical I/0 units
are: SCARDS, SPRINT, SPUNCH, GUSER, SERCOM, and the numbers 0
through 9. The value of an arithmetic expression must be
integer-valued from 0 through 9 or the address of a "FDUB" as
returned by the subroutine GETFD. Non-integer values will be
truncated to the next lower integer value.

In 0S, the value cf a character-string expression must be a
current "“ddname". These names are defined through DD job
control lanquage statements. The value of an arithmetic
expression must be integer-valued from O through 99. Non-
integer values will be truncated to the next 1lower integer

Part I -- Description of the MAD/I language

108 Section 6: Input/Output

value.
Exanples: (using MTS conventions)

'OPEN' (*UNIT®* "0",'END OF FILE' MACEND) ,MACLIB
'OPEN' (*UNIT®* O, 'END OF FILE' MACEND) ,MACLIB
'OPEN' (0O, MACEND), MACLIB

are all equivalent and open the file MACLIB which uses the data
set associated with the logical I/0 unit 0.

'READ DATA' (*UNIT' MACLIB)
'REAL DATA' (MACLIB)

are equivalent and use the file MACLIB. If MACLIB were opened
with one of the above 'OPEN' statements, the data set ultimately
used would be the one associated with the logical I/0 unit 0.

'READ DATA® (*UNIT* "SCARDSW)
READ DATA® ("SCARDSY)

are both egquivalent and perform a data-directed input
transmission using the data set associated with the logical I/0
unit SCARDS. The file associated with the unit specification
"SCARDS" will be implicitly opened the first time it |is
referenced tarough the execution of an input/output statement
wvhich specifies it.

Part I -- Description of the MAD/I LlLanguage

L

-

J T
Wy

5ct

4 P

-

ot

it

B 2o B o

oot

Section 6: Input/Output 109

6.3.2 Data_set Name Specification

The name of a data set can be specified through the 'DATA
SET* specification in the input/output statement. This
specification is done through a character-string exgression.
The value of this expression is interpreted in a systeam-
dependent fashion.

All implicit references to files which satisfy the
following two rules will be considered as references to the ggme
file:

1. All references are by means of a data set nanme
specificaticn.

2. All references are by means of character-string
expressions which compare as equal in value.

In MTS, the value of the character-string expression nust
be a file or device name ("FDnameW%). The name may be a
concatenation of file or device names, each followed by
modifiers or a 1line number range, as described in the MTS
manual. The FDname need not be followed by a blank. Note that
the MTS term “file" represents a different concept than the
MAD/I term "file". Note that the conventions governing implicit
references to MAD/I files dictate that "F" and "F " name the
same MAD/I file while "F(1,10)" names a different MAD/YI file
although all three forms use the same MTS file. A FDUB is
acquired from MTS each time a MAD/I file is opened with a data
set name specification.

Examples: (using MTS conventions)

YOPEN' (*DATA SET' “*SYSMAC",'END OF FILE'
MACEND) , MACLIB
'OPEN' (, MACEND,'DATA SET' "*SYSMAC") ,MACLIB

are equivalent and open the file MACLIB which uses the data set
consisting of the MTS file “*SYSMACY,

'READ DATA® (*LCATA SET® “*SOURCE*")

performs a data-directed input transmission using the data set
consisting of the MTS FDname *SOURCE*, which is usually the
user's terminal (or Lkatch stream.) The file associated with the
data set name specification "*SOURCE*" will be implicitly opened
the first time it is referenced through the execution of an
input/output statement which specifies it.

Part I -- Description of the MAD/I lLanguage

110 Section 6: Input/Output

6s3.3_ _Character-string Specification

The character-string specification allows a character-
string expression to be used as if it were a data set containing
one record. A character-string specification is specified
through the 'STRING DATA SET' specification in the input/output
statement. This specification is a character-string expression.
For output transmission, it is restricted to a designator which
references a character-string.

All implicit references to files by means of a character-
string specification will be considered as references to
different files.

Examples:
YOFEN' (*STRING DATA SET' "“data string") ,DATASTRING

opens the file DATASTRING which uses the “ata set comnsisting of
one record, the contents of the constant "data string".
DATASTRING can only be used for an input activity, since a
constant cannot be used as a designator.

'DECLARE® S *VARYING CHARACTER® (256)
'OPEN' (*STRING DATA SET* S),DATASTRING

opens the file DATASTRING which can he used for either an input
activity or an output activity. In either case, the data set is
considered to have a capacity of only one record.

'DECLARE' S *VARYING CHARACTER' (256)
'WRITE DATA®' ('STRING DATA SET' S),data-list

performs a data-directed output transmission using the variable
S as the data set. The file associated with the character-
string specification S will be implicitly opened each time it is
referenced through the execution of an input/output statement
which specifies it. Thus the character-string specification S
can be used repeatedly, but only one record can be read or
written with it during each execution of an inputy/output
statement.

2art I -- Description of the MAD/I language

[N

-

— I

P ———

Section 6: Input/Output 111

6.3.4__Entry-napme_sSpecification

The entry-name specification allows a data set to be
defined in terms of tvwo procedures, one which is called for
every input record, the other vhich is called for every output
record. An entry-name specification is specified through the
'ENTRIES' specification in the input/output statement. This
specification consists of a variable of 'ENTRY NAME' mode or a
parenthesized list of two variables of 'ENTRY NAME' nmode. The
first (or only) variable is called once for every input record
required. The input record must be returned as an expression of
*VARYING CHARACTER' nmode. The second variable is called cnce
for every output record. The call includes one parameter, the
contents of the output record in a variable of ‘'VARYING
CHARACTER' mode. An end-of-file or end-of-volume condition can
be returned through a return index of 1.

All implicit references to files which satisfy the
following three rules will be considered as references to the

same file:

1. All references are by means of an entry-name
specification.

2, All the variables of 'ENTRY NAME' mode for reading
compare as equal or all are missing.

3. All the variables of 'ENTRY NAME' mode for writing
compare as equal or all are missing.)

Examples:

"OPEN' (*ENTRIES® IN),PROCFILE
"OPEN' (*ENTRIES' (IN,0UT)),PROCFILE
*OPEN' (*ENTRIES® (,0UT)) ,PROCFILE

all open the file PROCFILE which calls the procedures IN and CQUT
for input activity and output activity respectively. Omitting
the input procedure (example 3) causes an end-of-file condition
on input transmission requests; omitting the output procedure
(example 1) causes an end-of-volume condition on output
transmission requests.

*READ DATA® (*ENTRIES® (IN,OUT))

performns a data-directed input transmission using the data set
associated with the entry-name specification (IN,OUT). The file
asscciated with this specification will be implicitly opened the
first time it is referenced through the execution of an
input/output statement vhich specifies it.

Part I -- Description of the MAD/I language

112 Section 6: Input/Output

6.3.5 Default Specification

A data set is associated vith a file by default if none of
the previous four vays of specifying the data set has been used
in the input/ovtput statement. The default data set for input
is that assoriated with the systeam standard input unit. The
default data set for output is that associated vit the systes
standard output unit.

All implicit references to the default jpput are comsidered
to be references to the sape file. All implicit references to
the default Qytput are considered to be references to the gaas
file, but djifferent from the file assumed for default input.

In NTS, the default data set for input is that associated
with the logical I/0O unit SCARDS; the default data set for
output is that associated with SPRINT.

In 0S, the default data set for input is that associated
with the ddname SYSIN; the default data set for output is that
associated with SYSPRINT.

Examples: (using MTS conventions)

'OPEN' (*END OF FILE' A,°'END OF VOLUME' B),FNANE
"OPEN' (,A,B),FNANE

are equivalent and open the file FNANE vhich uses the systeas
standard input unit (SCARDS) for input and the systea standard
output unit (SPRINT) for output.

*READ DATA'

performs a data-directed input transaission using the default
input file which is associated with the logical I/0 unit SCARDS.
The default input file will be implicitly opened the first time
it is referenced through the execution of an input/output
statement which specifies it.

part I -- Description of the MAD/I Language

e

=~

[e e

tmmmm,

7t

-~

! =

Section 6: Input/Output 113

6.4__File Attribuytes

Bach file has a collection of attributes associated with
it. For explicitly opened files, the attributes and their
values can be specified in the 'OPEN' statement. Attrikbutes
vhich are omitted are given default values. Por implicitly
opened files, all attributes are given default values. The
value of most file attributes can be overridden in any
input/output statement for the duration of the execution of that
statement.

6.4.1 Data _set Assocjated with the File

The most important attribute of a file is the data set name
used by the file and the Bmanner in which this name was
specified. This attribute has been described in Section 6.3.
This attribute cannot be overridden in an input/output
statement.

6.4.2 End-of-file File Attrilbute

The end-of-file file attribute is specified through the
'END OF PILE®' specification of an input/output statement and has
as its valre an entry-name variable. This entry-name is called
vhenever an end-of-file condition is sensed froa the data set
asscciated with the file in response to an input request. The
default end-of-file attribute value is the systeam subroutine
vhich teraminates execution. The end-of-file file attribute can
be overridden in an input/output statement. In this case its
value can be either an entry-name or a transfer-point.

In HTS, the default end-of-file attribute valye is the
system subroutine SYSTEN.

Examples:

‘OPEN® ("SPRINT",MACEND) ,FNANE

YOPEN' (*END OF FILE®' MACEND,*UNIT®* "SPRINT") ,PNAME
*READ DATA' (FNAME, NEWEND)

‘READ DATA® (*END OF FILE' NEWEND,'UNIT' FNAMNE)
‘READ DATA®' (*END OF FILE® NEWEND)

*READ DATA' (,NEWEND)

6.4,3 End-of-volume File Attribute

The end-of-volume file attribute is specified through the
YEND OF VOLUME®' specification of an input/output statement and
has as its value an entry-name variable. This entry-name
variable is called vhenever an end-of-volume condition is sensed

Part I ~- Description of the MAD/I language

114 Section 6: Input/Output

from the data set associated with the file in response to an
output reqaest. The default end-of-volume attribute value is
the systes subroutine vhich terminates execution. The end-of-
volume attribute can be overridden in an input/output statesent.
In this case its value can be either an entry-nase or a
transfer-point.

In MTS, the default end-of-volume attribute value is the
system subroutine SYSTEM.

Exaaples:

OPEN?' ("SPRINT", ,MACEND) ,FNANE

*OPEN' (*END OF VOLUME® MACEND,'UNIT' "SPRINT™) ,FNAME

'WRITE DATA' (FNAME,NEWEND) ,data-list

'WRITE DATA®' (*END OF VOLUME®* NEWEND, 'UNIT®* FNAME) ,data-
list

'WRITE DATA' (*END OFP VOLUME®' NEWEND) ,data-list

'WRITE DATA' (,NEWEND) ,data-list

E.4,8_ _Error FPile Attribute

The error file attribute is specified through the 'ERROR’
specification of an input/output statement and has as its value
an entry-name variable. This entry-name variable is called
vhenever an error condition is sensed froa the data sct
associated with the file in response to an input or output
request. The default error attribute value is the systea
subroutine which terainates execution abnorasally. The error
attribute can be overridden in an input/outrut statement. In
this case its value can be either an entry-name or a transfer-
point.

In MTS, the default error attributie value is the systen
subroutine ERROR.

Examples:

'OPEN® ("SPRINT",,,MACERR) ,PNAME

'*OPEN' (*ERROK®' MACERR,'UNIT' “SPRINT") ,FPKAME

'WRITE DATA' (FNAME,,NEWERR) ,data-list

'READ DATA' (FNAME, ,NEWERR)

'WRITE DATA' (*ERROR' NEWERR, 'UNIT' FNAME) ,data-list
'REAC DATA' ("ERROR' NEWEKR,'UNIT®' FNAME)

'WRITE DATA' (*ERROR' NEWERR) ,data-list

'REA)D DATA' ("ERROR' NEWERR)

'WRITE DAT?»'(,,3EWERR),Zata-1list

'READ DATA* {,,NEWERR)

’)art 1 -- Lescription of the MAD/I language

[¢ : .

S commt

od

[

—

~e

-

Section 6: Input/Cutput 115

6.4.3 Haximup-length File Attribute

The maximum-length file attribute is specified through the
'MAX LENGTH®' specification of an input/output statement and has
as its value an arithsetic expression or a parenthesized list of
two arithmetic expressions. If only one expression is given,
its value, truncated to the next lover integer value, is taken
as the maximum input and output record length in bytes. If two
expressions are given, the value of the first, truncated to the
next lower integer value, is taken as the maximum input record
length in bytes; the value of the second, similarly truncated,
is taken as the pnmaximum output record length in bytes. The
default maximum-length file attribute values are the maximun
input and owutput record lengths alloved for the data set
associated with the file. The maximum-length file attribute can
be overridden in an input/output statement.

In BTS, the default maximum-length attribute values are the
maximum input and output record 1lengths as returned by the
subroutine GDINFO.

Examples:

'OPEN* ("SPRINT", *MAX LENGTH' 133) ,FNAME

'OPEN® ("SPRINT",*MAX LENGTH® (255,71)),FNANE
'WRITE DATA® (FNAME,*MAX LENGTH®' NEWLN) ,data-list
‘READ DATA® (*HMAX LENGTH' NEWLN)

$.4.6 Echo File Attribute

The echo file attribute is specified through the ('ECHO*
specification of an input/output statement and has as its value
any operand acceptable as a unit specification. Every
input/output transmission using the file is echoed on the unit
specified by the echo file attribute. The default echo file
attribute value is no echoing. The echo attribute can be
overridden in an input/output stateament.

Examples: (using MTS conventions)
'OPEN® ("SPRINT",'ECHO' "SERCOM") ,FNAME

SKEAD DATA' (*ECHO* ®SPRINT")
'READ DATA' (*ECHO' FPNAME)

Part I -- Description of the MAD/I Language

116 Section 6: Input/Output

6.5__Miscellaneous Inputsoutput-Specifications

The miscellaneous input/output specifications are used to
specify both required and optional information within an
input/output stateament.

6:2,1 Format Specification

A format can be specified through a 'FORMAT' specification
in an 1input/output stateament. The format is used in foraat-
directed transsission to control the form and conversion of
data. This specification is done through a character-string
expression, whose value 1is the format. The value of this
expression is interpreted in a system-dependent fashion; there
is no specification of a format language as a part of MAD/I.

In MTS, IOH360 is used as the format interpreter. The
character-string expression amust be a valid format as descrited
in the IOH360 description in the MTS manual.

Examples: (using MTS conventions)

'WRITE* ("' X=',P10.0,' X*X=',P10.0%") X X*X
'WRITE' (*UNIT' “SERCOH"™,'PORMAT' "' FILE ',C,' HAS BEEN
CREATEL. **") ,FNANE

6.5.2 _line Specification

A line specification is used to perform randoa accesses to
a data set. The line is specified via the 'LINE' specification,
vhich specifies an arithmetic expression. The value of this
expression 1is interpreted in a systeam-dependent fashion to
determine the position in the data set at which the input/outgut
activity of the current statement is to begin. Further
input/output activity will be conducted in a sequential fashion
until the next occurrence of a line specification.

In MTS, the line specification can be used for 1line files
or sequential files. For 1line files, the value of the
arithmetic expression 1is interpreted as the 1line nunter,
multiplied by 1000, of the 1line to be next read or written.
That is, the expression must have a value of 1500 to read or
write beginning at line 1.5 of the file. This is the same value
as used by the MTS input/output subroutines, such as SCARLS.
For sequential files, the value of the arithmetic expression
must be a value returned by a *LAST LINE' specification in a
previous 1input/output statement. This value is used internally
to retrieve the corresponding note-point information. Both the
read and write pointers are updated with the appropriate values.

Part 1 -- Description of the MAD/I Language

LY

i
L 27

.

.

»w

Section 6: Input/Output 17

Exaaples: (using MTS conventions)

*READ®' ("15%",0,'LINE' 1000) ,NUNB
'WRITE® ("I5*",0,'LINE' A+B) ,NUMB

6.5,3 Llast-line Specification

A last-line specification is used to record the current
position in a data set so that a file can later be re-positioned
to that position in the data set. This is specified via the
'LAST LINE* specification, which consists of a designator for an
arithmetic value. The input/output system returns a value which
can be wused in the *LINE' specification to position the data
set. This returned value is treated in a system-dependent
fashion.

In MTS, the last-line specification can be used for any
data set. For line files, the value returned is the line number
of the last record read or vwritten by this statement, multiplied
by 1000. That is, the value 1500 is returned if 1.5 wvas the
line nuaber of the last record read or written by the statement.
This is the same yalue as used by the HMNTS input/output
subroutines, such as SCARDS. For sequential files, the value
returned is a code used internally to retrieve the note-point
information corresponding to the last record read or vwritten.
For all other types of dJata set organization, a pseudo line
number is returned as computed by MTS.

Exaaples: (using MTS conventions)

*READ®' ("15%",0,*LAST LINE®' LLINE), NUMB
'WRITE® ("I5%",'LAST LINE' LNUN),NUMB

6.5.,4 _Last-length Specification

A last-length specification is used to obtain the 1length,
in bytes, of the last record read or written by the input/output
statement. This is specified via the 'LAST LENGTH'
specification, vhich consists of a designator for an arithametic
value.

Examples:

*READ UNCONVERTED® (0,*LAST LENGTH®' N) ,ARRAY
WRITE DATA® (*LAST LENGTH' LEN) ,data-list

Part I -- Description of the MAD/I language

118 Section 6: Input/Output

6.6__lInpytsoytput Specification Sumpary

The following table summarizes all the possible
input/output specifications and the possible wmodes of their
value expressions.

Keyword File AMtr? Desigpator? PRermissible Modes
'DATA SET® Yes* No Character-string
*ECHO! Yes No Arithmetic
Character-string
Pilenanme
‘END OF FILE? Yes No Entry-name
Transfer-point !
'END OF VOLUME' Yes No Entry-namse
Transfer-point 1!
*ENTRIES® Yese No Entry-name
Two entry-name 2
'ERROR® Yes NO Entry-name
Transfer-point 1!
'FORMAT' No No Character-string
'*LAST LENGTH' No Yes Aritheetic
*LAST LINE® No Yes Arithmetic I
"LINE® No No Aritheetic
‘MAX LENGTH® Yes No Arithmetic S
Two arithmetic 2
'STRING DATA SET' VYes Yes?d Varying-character !
‘UNIT!® Yes* No Arithaetic
Character-string
Pilename i

(1) Transfer-point exgressions cannot be used in *QPEN?
statements. .-

(2) Two expressions are represented as a parenthesized 1list of
tvo expressions.

(5) Need not bte a designator for input activity.

(4) Theuse speoifications are used to denote the file to be used;
hence, ot wmost oue of these can be given per input/output
statement.

il

4rt I -- PDescription of the MAD/I Language

-

Section 6: Input/Output 119

§.7__Data-lists

A data-list is used to specify the designators to which
data are to be assigned (for input activity) and the data values
to be transmitted (for output activity.) The elements of a
data-list may be either block-elements or expressions. For
input activity, the expressions are restricted ¢to designators.
For example, the data-list

A, X¢3, C

is valid for oautput activity but not for input activity, because
X+3 1is pnot a designator. In either case, it should be
understood that expressions include embedded statements. For
input activity, further references involving designators earlier
used as data-list expressions refer to the newv value just read.
For example, N,A(N) wuses ¢the new value of N in forming the

reference to A(N).

6.,7,1 _Block Elements

A block-element is a pair of subscripted elements from the
same array separated by an ellipsis (vithout commas). The
subscripts may be arbitrarily complex. An example of a block-
els:ment is:

A(I,J)eeeh(I¢3,K)

The block-element represents all the elements of the array, froa
the first-naned element through the second-named element,
sequencing through the elements in the order determined by the
array sequencing rule (Sec. 3.1.2.1). For example, if ve have
declared

A 'FIXED ARRAY' (-1...1,2,0...2)
then
A(0,1,1)...4(0,2,2)
represents the five elements
A(0,1,1, A(0,1,2), A(0,2,0), A(0,2,1), A(0,2,2) .
The number of array elements represented by a block-element can
vary during execution as the subscript values vary. For

example, B(1)...B(N), vhere B .as been declared an array vith
one dimension, represents N array elements.

Part I -- Description of the MAD/I Language

120 Section 6: Input/Output

6.7.2_ _Array Expressions

An expression vhose result is of an array mode represents
all the elements of the array, sequencing through the eleasents
in order. For example, if we have declared

C 'FIXED ARRAY'("...‘.Z)

then the use of C as an expression in a data-list represents the
six elements

C(‘1v1)t C(-1,2), C(oo”o C(O,Z). C(‘v‘)o C(102) .

6.,1.3__Component-structure Expressiops

An expression whose result is a component structure
represents all the elements of the cosponent structure fros
left-to-right in the same order as declared. For example, if we
have declared

D 'COMPONENT STRUCTURE' (@A "INTEGER',@B *FIXED ARRAY'(2))

then the use of D as a data-list expression represents the three
items

D$@A, DSaB(1), D$SaB(2) .

6.7.4_ Upsupported Modes
Expressions whose result is one of the folloving wmodes

cannot be used as data-list expressions: 'ALTERNATE', ‘PIT‘,
*ENTRY POINT', 'PILE NAME', and 'TRANSFER POINT'.

cast [-=- Jescriptior. of the MAD/I Language

]
44

.o

-

b

Section 6: Input/Output 121

6.7.5 Esledded Statements

An embedded statement can be used as an expression in a
data-list. For prefix statemernts, the expressions in their
scope (i.e., the expressions following the comma in the short
form or the expressions delimited by semicolons in the long
form), will be called scope_expressions, In the execution of
the embedded statement in the data-list, any scope exgressions
vhich appear in a 'LIST' statement are treated as a part of the
data-list. For an input activity, the scope expressions of a
'LIST' statement are restricted to designators.

Examsples:
The data-list
N, ('FOR' I := 1,1,I>N, °'LIST' X(I))
is equivalent to the data-list
N, X(1)...X(N) .
The data-list

Ny (*FOR' I := 1,1,I>N; °'LIST' X(I),Y(I); *IF' I>1,
'LIST' Z(I) ‘END')

is equivalent to

NX(),Y(1),X(2),Y(2),2(2),X(3),¥(3),2(3), -~
X (N) , Y (N),Z(N) .

Part I -- Description of the MAD/I Language

122 Section 6: Input/Output

6.8__Syptax of the Ipput/output Statepepts

An inputsoutput statement (other thanm 'CLOSE') consists of
a keyword, followed by an optional parenthesized specification
list, optionally followed by a comma and a data-list. A close
statement consists of the keyword 'CLOSE' followed by a file-
name expression.

I/0-statement = I/O-keyword [I/O-spec~list]) [, data-list]
close-statesent = 'CLOSE' filename-expression
Examples:

*OPEN' ("SPRINT",MACEND) ,FNAME
'READ DATA'

*REALC',A,B,C

'CLOSE' FNAME

The permissible input/output stateament keyvords are:
'"OPEN', 'READ', 'READ DATA', 'READ UNCONVERTED', °'WRITE', °'WRITE
DATA', and *'WRITE UNCONVERTED"'.

1/0-keyvword = 'OPEN' | 'READ' | °'READ DATA' | °READ
UNCONVERTED®' | °*WRITE' | °‘WRITE DATA' |
"NRITE UNCONVERTED'

An input/output specification list consists of a
parenthesized list of one or more specifications which can be
given in a positional or a keyword form, or a mixture of Loth.
For each input/output statement, the input/output specifications
are each assigned a position in the 1list, froa most-coanonly-
used specification (on the 1left) to least-commonly-used
specification (on the right). A specification can he given in
positional form by putting its expression in the appropriate
position in the input/output specification list. Specifications
can be skipped over in the positional form by using successive
commas. Positional specifications cannot be used to the right
of the first keyword specification in the list. A specification
can be given in keyword form by preceding its expression by the
appropriate keyword. A keyvord specification can be given in
any position in the 1li ‘t. The syntax is as follows:

Part 1 -- Description of the MAD/I Language

[= ‘_.i.f

B S 4

-w

-w

-v

Section 6: Input/Output 123

I/0-spec-list = (I/O0-keyvord-spec-list)
{ (I/0-positional-spec-list)
{ (I/0-positional-spec-list ,
I/0-keyvord-spec-list)

I/0-positional-spec-list = ljist , I/0-spec-expr

I/0-keyvord-spec-list = ljist , (I/0O-spec-keyword
I/0-spec-expr }

I/0-spec-keyvord = 'DATA SET' | *ECHO' | *END OF FILE" |
'END OF VOLUME® | *ENTRIES' | 'ERRCR' |
"PORMAT' | °'LAST LENGTH' | °*LAST LINE'
{ 'LINE' | MAX LENGTH' | ‘'STRING DATA
SET* | 'UNIT®

I/0-spec-expr = expression

{ (expression , expression)
i (, expression)

Examples:

("SCARDS",ENLFILE)

("SCARDS" ,ENDFILE, *MAX LENGTH' 72)
(*MAX LENGTH* (72,132))

("SCARDS", ,GOERR)

A data-list consists of a list of expressions and block-
elements, separated by commas. Data-lists have been discussed
in Section 6.7.

data-list = ;igg', { expression | block-element }

block-element = array-element-desiqg ... array-element-desig

Part I -- Description of the MAD/I Language

124 Section 6: Input/Output

6.3__Input/Qutput Statements

A brief description of the input/output statements is given
below. Each descriptive section begins with the stateament
prototype followed by a 1list, in positional order, of the
acceptable specification elements (vhich may, of course, take
default valuas).

£.2.1 _File Specification

Statement Prototype:
'OPEN' [I/O-spec-list] , filename-designator

Allowable Specification Keywords: *UNIT®, 'END OF PILE*, *END OF
VOLUME®*, *'BRROR', 'ECHO*, °*MAXLENGTH®*, °*DATA SET', °*STRING
DATA SET', *ENTRIES®

The file referenced by the filename-designator is
explicitly oponed. The values of its file attributes sre
determined by the I/0-spec-list. Those attributes vhich are not
given values take on default values. All file attributes (other
than the data set associated vith the file) can be overridden in
input/output statements wvhich reference the file. A file vhich
has been explicitly opened can be used in the unit specification
of all inputy/output statements other than °*OPEN' until the file
is closed through a 'CLCSBE' statement.

Examples:

"OPEN® (0, MACEND) ,MACLIB
'OPEN® (*END OF PILE' BACEND, 'UNIT® 0),MACLIB
"OPEN' (, MACEND, *DATA SET' "#SYSMAC"™) ,MACLIB
"OPEN' (*ENTRIES® (IN,0UT)),PROCPILE

"OPEN' ,DEFAULTFILE

Statement Prototype: 'CLOSE®' filename-expression

The explicitly opened file specified by the filename-
expression is closed. The filename-expression cannot be used in
any further imput/output statements without being opened again.
No other copies of the value of the filename-expression can be
used in further input/output statements, even if the file 1is
opened again. If a data set name specification ('DATA SBT') vas
used vhen the file 7as opened, the system in wvhich the NAD/I
program is being run is notified that this usage of the data set
has ceased. The systeas is then free to close the data set when
it feels that is appropriate.

Examples:

Part 1 -- Description of the MAD/I language

pered

bt G e

4

L 2

Section 6: Input/Output 125

'CLOSE*' HACLIB
CLOSE FILEARRAY (I+3)

$:9,2 _Data-Directed I1/0

Data-Directed Ipnput

Statement Prototype: *'READ DATA®' [I/O-spec-list] [, data-list]

Allowable Specification Keywvords: ‘UNIT*, ‘END OF FILE!,
‘ERROR', *LINE*, *LAST LINE*, *'LAST LENGTH®, 'ECHO', °'MAX
LENGTH*, 'DATA SET', *STRING DATA SET', *ENTRIES'

This statement causes a data-directed input transaission.
The format of acceptable input records is discussed in Section
6.2.1. If the data-list is given, the designators allowed on
the input records are restricted to those wvhich reference the
variables specified in the data-list. If no data-list is given,
any designator which is valid within the block containing the
'READ DATA' statement can be given in the input records. All
variables known within the block which can be specified in the
input records as described above will automatically be entered
(at compile time) in the run-time syabol table.

Examples:

READ DATA

'READ DATA®' (*ECHO' ®“SPRINTY)

*READ DATA® (*CATA SET®* “INITVALUES%)

‘READ DATA*, A,B,CONMPLXN,2
each could be used to read the record:

A:=-3.2, B:="S", COMPLXN$®R:=1.5, 2(2):=1,,5(2);

The first three examples would force all the variables known
within the block containing the *'READ DATA' statement into the

run-time symbol table, wvhile the last example would force only
A, B, CONPLXN, and Z into the run-time syabol table.

Data-Directed Outpyt

Statement Prototype: *WRITE DATA' [I/O-spec-list] , data-list
Allovable Specificaticn Keywords: ‘'UNIT*, *END OF VOLUME*,

*ERROR', *LINE', °*LAST LINE', °'LAST LENGTH®, °*ECHO®, ‘*MAX
LENGTH', °*DATA SET', *STRING DATA SET*, °*ENTRIES'

Part I -- Description of the MAD/I lLanguage

126 Section 6: Input/Output i

This statement causes a data-directed output transmissicn.
The format of the output records produced is discussed in 18
Section 6.2.1. Symbol table entries for each element in the
data-list will automatically be entered in the run-time syatol
table.

Examples:
'WRITE DATA',X+43,A
would produce an output record like:

g = 10' A= =22

Also,
'WRITE DATA® (*CATA SET' ®"NEWVALUES®) ,2(2)...2(5)
would produce an output record like:

2(2) = 1.5, 3.6, -10.2, 8.63;
6.9.3 _List-Directed I/0

list-Digected Ipput

Statement Prototype: 'READ' [I/0-spec-list] , data-list

Allowable Specification Keywords: o, ‘'UNIT', *'END OF PFILE',
YERROR', 'LINE', *LAST LINE', 'LAST L2NGTH', 'ECHO', 'MAX
LENGTH', °'DATA SET', °*STRING DATA SET', 'ENTRIES'

This describes a list-directed input transasission. The o
represents the 'FORNMAT' 1,/0 specification. List-directed
input/output is distinguished from format-directed input/output
ty the absence of the '"FORMAT' specification. The format of
acceptable input records is discussed in Sectior 6.2.2. Symbol
table entries for each data-list element will automatically be
entered in the run-time symbol table.

Examfples:
YREAD' ,N,M, X (1) ... X(N)
YREAD' (,0) , N, M, X (1)...X(N)
YREAD® (YUNIT' O) N, M X(1)...X(N)
each could be used to read the record:

a ’ "CASE 1"' 1.5' 3.2 ’ -03' 16

part I -- LCescription of the MAD/I language

| . o B e

-e

Section 6: Input/Output 127

List-Directed Output

Statement Prototype: 'WRITE' [I/O-spec-list] , data-list

Allowvable Specification Keyvords: o, *UNIT*, *END OF VOLUME',
*ERROR', 'LINE', *LAST LINE*, *LAST LENGTH®', *ECHO®', *MAX
LENGTH', *DATA SET*, *STRING DATA SET', *ENTRIES'

This describes a list-directed output transaission. The o
represents the *FORMAT' I,/0 specification. List-directed
input/output is distinquished from format-directed input/output
by the absence of the 'FORMAT' specification. The format of
output records produced is discussed in Section 6.2.2. Sysbol
table entries for each data-list element vill automatically be
entered in the run-time syabol table.

Examples:
*WRITE®', N,"VALUES ARE:",X(1)...X(N)
WRITE (,0), N,"VALUES ARB:",X(1)...X(N)
*WRITE® (*UNIT* O), N,"VALUBS ARE:",X(1)...X(N)

each vould produce a record like:

4 VALUES ARE: 1.5 3.2 -0.7 16.0
6:9,4__Format-Directed I/9Q

Frrmat-Directed Ipput

Statement Prototype: 'READ' I/O-spec-list , data-list
Allowable Specification Keyvords: *FORMAT®, ‘*UNIT', °*ENLC OF
FILE*, 'ERRORY, °'LINE', °LAST LINE', *'LAST LENGTH', *ECHO',
*MAX LENGTH', °*DATA SET', 'STRING DATA SET', 'ENTRIES?®
This describes a format-directed input transmission, as
described in Section 6.2.3. PFormat specifications themselves
are discussed in Section 6.5.1.

Exanmples:

REALC ("IS5*") ,N
READ ("IS5%%,0),N

each could be used to read the record:

nng3n

Part I -- Description of the MAD/I Language

128 Section 6: Input/Output

vhere each o represents a blank.

Format-Directed Output

Statement Prototype: 'WRITE' I/O-spec-list [, data-list]

Allowable Specification Keywords: *‘PORMAT', ‘'UNIT', °*END OF
VOLUME', 'ERROR', 'LINE', 'LAST LINE', °*LAST LENGTH',
*ECHO', 'MAX LENGTH', f'DATA SET', °*STRING DATA SET',
*ENTRIES?

This describes a forsmat-directed output transsission, as
described in Section 6.2.3. Porsat specifications theaselves
are discussed in Section 6.5.1. The first character of the
output 1line B®may be treated as a 1logical carriage coatrol,

depending upon the systes in which the MAD/I program is being
run and the type of the data set organmnization.

“Examples:
'WRITE' ("'GENTER THE PILE NAME:!'&")
will produce the output record:
GENTER THE FILE NAME:
In MTS, the "g" will be treated as a 1logical carriage control
vhich suppresses a line-feed at the end of the line if the data

set is a terminal.

'WRITE® ("*'X="',F3.2%") X
'WRITE' ("*X="',F3.2*",0),X

each would produce an output record like:

X=315.52

Statement Prototype:
*READ UNCONVERTED' [I/O-spec-list]} , data-list

Allowvable Specification Keywords: ‘'UNIT', P'END OF PILE',

'ERROR', 'LINE', 'LAST LINE', °'LAST LENGTH', *ECHO', ‘'MAX
LENGTH', *DATA SET', *STRING DATA SET', *ENTRIES'

Part I -- Description of the MAD/I lLaaguage

.

; Section 6: Input/Output 29

deScribed in Section 6.2.4. Exactly one record will be read.
The record must have been vwritten wvwith a *WRITE UNCONVERTED'
statement. The data-list items must agree in mode with those
specified in the 'WRITE UNCONVERTED' statement which preduced
the record. Sysbol table entries for all the variables which
are referenced in the data-list will automatically be entered in
the run-time symbol table. Unconverted input/output is the most
efficient type of transmission because conversion is not needed.

{ This statement causes an unconverted input transmission as

Examples:

*REIL UwCONVERTED', H,X(1)...X(N)
‘READ UNCONVERTED® (0}, N,X(1)...X(N)

Unconverted Oytput:

Statement Prototype:
'WRITE UNCONVERTED' [I/O-spec-list] , data-list

Allowvable Specification Keywvords: ‘'UNIT', 'END OF VOLUNE',
'ERROR?, ‘LINE', 'LAST LINE', 'LAST LENGTH', 'ECHO', 'MAX
LENGTH', *'DATA SET', 'STRING DATA SET', 'EWNTRIES'

This statement causes an unconverted output transmission as
described in Section 6.2.4. Exactly one record will be written.
The record can be read only with a "READ UNCONVERTED' statement
vhose data-list items agree in mode to those specified in the
'WRITE UNCONVERTED' statement vhich produced the record. Syabol
table entries for all the data-list elements will automatically
be entered in the run-time symbol table. Unconverted
input/output is the most efficient type of tramsmission because
conversion is not needed.

Examples:
'WRITE UNCONVERTED', N,X(1)...X(N)

'WRITE UNCONVERTED® (0}, %,X(1)...X(N)
'WRITE UNCONVERTED',N+3,M,X(1,1) ...X(N¢3,N)

Part I -- Description of the MAD/I Language

130 Section 7: Program Structure

Section 7; Program Structure

J.1__Block strycture

Like other languages such as PL/I and ALGOL 60, HMAD/I
includes the concept of block structure.

There are tvo kinds of blocks: compound-statesent blocks
and procedure blocks.

A compoynd-statement _block is a 'BLOCK statement
(Sec. 5.10). The block begins with the statement keyword

'BLOCK', ends with the corresponding end keyword ‘'END*', and
contajns all the intervening text. If the statement is labeled,
the label is pot contained in the block.

A proceduyre block is a 'PROCEDURE' statement (Sec. 5.7.1).
The block begins wvith the statement keyvord *PROCEDURE®, ends
vith the corresponding end keyword ('END PROCEDURE* or ‘'ENDY),
and contains &ll the intervening text. If the statement is
labeled, the label is pot contained in the block. Both the
short-fora and the long-fors *‘PROCEDURE' statements are blocks.

Blocks may be properly nested; a block may contain other
blocks, wvhich may in turn contain other blocks. We will say
that a portion of text T (a symbol, expression, or statesment) is

internal to a block B, and that B properly coptaipns T, if and
only if:

(1) B contains T, and

(2) there is no block C such that B contains C and C
contains T.

Every MAD/I program is a block -- eitler a compound-
statement block or a procedure block. It is called the
outermost block, and is not internal to any block. Every other

block in the program is internal to exactly one block.

Part I -- Description of the MAD/I lLanguaqe

Pt

iy [=] Buiinnd

ru

—

_— O B e e

Section 7: Program Structure 131

1.2__Scope of names

The block structure of a program provides a convenient
framevork in vhich to define the "scope of names" and a "re-
naming conv-ntion". We shall take "names" to mean jdentifiers
only, althcugh these concepts could potentially be extended to
operators and keywvwords as well.

The re-paping _conveptjon allows the same sequence of
source-program characters (i.e., the same symbol) to be used to

represent more than one name in the pragram, provided that the
different usages are disjoint, so that each instance of the
syabol represents a well-defined name.

Exanmple:
PROCEDURE AA;
INTEGER I, J, K;
stat-seq-1iA1;

*PROCEDURE®' BB;
INTEGER I, J, L;
stat-seq-B;

*END PROCEDURE';

‘stat-seq-A2;
*END PROCEDURE'

In the above example, the four syambols I, J, K, and L are used
to represent six different identifiers (names):

in block AA, but not block BB;
in block AA, but not block BB;
in block AA;
in block BB;
in block BB;
in block BB.

MR GM

The scope of a name is the union of all portions of a
program (or a linked set of programs) in which the nare is
“known"; i.e., all places where it may be used. (See also
Section 3.3.) A name is "known" in a portion of text T if an
instance in T of the symbol representing the name is recognized
as an occurrence of that nanme.

Every name must be declared (explicitly or implicitly) in
some block (see Sections 3.5-3.7). The scope of a given name N
can be determined as follows (let S be the symbol representing

N):

(1) The scope of N includes all text internal to the block B in
which N is declared (B 1is the block to vwhich the
declaration of N is internal).

Part I -- Description of the MAD/I language

O Ot S

132

(2)

(3)

(4)

Section 7: Program Structure

If the scope of N includes declarations that N is *NOTNEW'
or ‘GLOBAL', the scope of N is extended “outwvard"
accordinaly (see Sec. 3.3). Multiple declarations of N are
permitted so 1long as they do not conflict, but oxrly one
sode declaration is allowed.

Let B1 be the smallest block containing all the scope of N
(B1 either is B or contains B). The scope of N is now
extended "invard" into all blocks internal to BY, and all
blocks internal to those, etc., g¢xcept that the scope of N
is not extended into any block which properly contains the
scope (or part of the scope) of any other name N'
represented ty the same symbol S.

Names declared 'EXTERNAL' or ‘'ACCESSIBLE' are called
"external" names. If two or wore external names are
represented by the same symbol, they are nmerged into a
sipgle name vhose scope is the union of the individual
scopes. The attributes of the names must not conflict.

Part 1 -- Description of the MAD/I Language

Srompmamet
.

e

LA

B

Section 7: Program Structure 133

7.3__Block_structure at_Run_ time

At run time, blocks are activated (entered) and termjipated
(exited) in a dynamic sequence determined by the order of

execution of the progras.

A compound-statement block is activated when control passes
through the statement keyword ('BLOCK') for the block. It is
terminated wvhen control passes through the end keyword (*END')
for the block, or vhen execution of a 'G0 TO' statexent
transfers control to a point not in the block.

A procedure block is activated vhen any cne of 1ts entry
points is called. It is terminated in any of the wvays described
in Section 5.7.3.

Recursive procedures have not yet been defined in the MAD/I
language.

Part I -- Description of the MAD/I language

134 Section 8: Compile-Time Pacility

Section _8; Compjile-Time Facilities

Sometines it is useful to be able to perform operations
that result in some change in the source text. These operations
or computations are performed at compilation time and not at run
time. MAD/I has some facilities for performing compile-time
operations.

8.1__The 'SUBSTITUTE' Statesent

The *SUBSTITUTE® statement may be used to associate a given
synbol (other than a constant) vith an arbitrary sequence of
symbols at translation time. The form of this statement is

SUBSTITUTE X S1 S2 ... Sn *END SUBSTITUTE'

vhere X and S1 through Sn are legal MAD/I symbols and X is not a
constant. After the occurrence of this statement, each
occurrence of the symabol X vill be replaced by the sequence of
symbols S1 through Sn.

Substitution would normally be used for representing either
repetitious portions of a program or some sequence occurring in
many parts of a program and changing from tramslation to
translation.

Note that S1 through Sn must be complete symbols. Also,
the context in which X occurs will in no way affect the
recognition of the symbols S1 through Sn.

Since the substitution of a symbol is effective only after
it has been defined by a *SUBSTITUTE' statement, that symbol may
have had a different meaning (i.e., may have been a variable,
operator, constant, etc.) previously. Whenever a substitution
definition is assigned to a symbol, the previous meaning is
pushed down. Previous definitions of a syambol may be restored
by means of the *'POP SUBSTITUTE' statement, vhich has the fora:

'POP SUBSTITUTE®' X
This will cause the last previous meaning of X toc be

restored. There is no limit on the number of redefinitions of a
synbol.

Part 1 -- Jescription of the MAD/I language

.-

4

[B2

SR T

==
—

-t

.o

L)

.o

Section 8: Compile-Time Pacility

For example, the following program section:

*SUBSTITUTE®
'SUBSTITUYE!
*SUBSTITUTE'
'SUBSTITUTE"
Y SUBSTITUTE®
YSUBSTITUTE®
*SUBSTITUTE®
YSUBSTITUTE®
'SUBSTITUTE'

' SUBSTITUTE'

SIZE 16 'END SUBSTITUTE®;

PI 3.1415927 *'END SUBSTITUTE*;

¢ - VEND SUBSTITUTE';

IF *IF' "END SUBSTITUTE®;
Q 3 *# Q *END SUBSTITUTE';
Q 2 *Q *END SUBSTITUTE';
A *FIXED ARRAY* (15,SIZE)
TEMP := 'END SUBSTITUTE®;
:= = 'END suasrrrurz':-

= TEMP 'END SUBSTITUTE';

'POP SUBSTITUTE®* TENMP ;

'DECLARE® XYZ A ;

IF MMM & DOW, EST = EST + 1 ;

BOR1 = Q / PI;

'POP SUBSTITUTE' Q:

BOR2 = Q / PI;

is equivalent to

*DECLARE® XYZ 'FIXED ARRAY' (15,16);

‘IP' MMM & DOW, EST := EST - 17;

BOR1 :

2 % 3 % Q/ 3.1415927;

BOR2 := 3 = Q0 / 3.1415927;

Part I -- Description of the BAD/1

*END SUBSTITUTE';

Language

135

136 Section 8: Compile-Time Pacility

8.2 _The 'INCLUDE® forp

The *'INCLUDE' form allows the programmer to specify, as a
part of the text of his source progras, a place vhere amore
source text may be obtained. The text so obtained is inserted
in place of the *INCLUDE®' form at coapile time.

Syntax: ‘*INCLUDE' character-syambol

The character string in the character-sysbol (Sec. 2.1.4.1)
specifies the 1location of the text to be included, The
INCLUDE® form itself may occur anyvhere in the source prograas
(except within a syabol or comment) -- it is not considered a
statement. The included text is obtained as a sequence of
characters, and is scanned 1like any other portion of source
text; it replaces the *INCLUDE' form vwhich specified it, and
should therefore be syntactically valid in the context of the
SINCLUDE* form. Included text may contain further °*INCLUDE'
foras.

The character string in the character-syabol is taken as a
data set name, and is interpreted in a systeam-dependent fashion
(see Section 6.3.2).

Example: *INCLUDE®* "DEPPACKAGE"

Part I -- Description of the MAD/I Language

b b

Section 9: MAD/I Definitional Facility 137

Sectjon 9: Definitional Pacility

This section has not yet been vwritten. Pacilities are
planned which will allowv the programmer to define new data
types, new operations, new operators, and new statements. New
constructs would be defined either in terms of existing
constructs (pre-defined or user-defined) or in terms of an
assemabler-like language.

The feasibility of an effective definitional facility has
already been established by actual experiments with MAD/I. (See
the memorandum by Srodawa vhich is cited in the Preface.) It
renains to design and implement a clean mechanism which allows
the user to express his definitions in a reasonable vwvay. This
requires more research.

One of the authors (Springer) is now writing a doctoral
dissertation whica describes an experimental definitional
facility based on MAD/I.

Part I -- Description of the MAD/I Language

138 Section 10: Example HMAD/I Prograss

Sectjon 10:; Exapple MAD/I_PLO9rams

0.1 _Procedures CALLSQRT and SQRT

This example shows two MAD/I procedures, CALLSQRT and SQRT.
CALLSQRT is the "main" prograe and calls upon the procedure
SQRT. There is no main program declaration; CALLSQRT becomes
the main program by being the first program executed by the
operating system. The default mode is 'FLOATING SHORT' since it
is not othervise declared. The procedure CALLSQRT reads a
nuaber, then prints the number entered followed by the value
returned by SQRT. The procedure SQRT computes the square root
of its argument using a1 Newton-Raphson approximation technigue.

'PROCEDURE* CALLSQRT.;
CALLSQRT: 'WRITE®' ("'&ENTER X:'%%) ;
"READ* ("WF*"), X;
'WRITE®' ("* X=',WF,' SQRT OF X=',WF*"),X,SQRT. (X);
'GO TO' CALLSQRT
YEND'

Y PROCEDURE®' SQRT. (X);
'*PRESET' EPS := .0007;

SQRT: *IFP* X=0. | X=1., 'RETURN' X;
Y := X;
LOOP: Z := (Y¢X/Y)/2.;
*IP' .ABS. (Y-Z) < EPS, 'RETURN' Z;
Y :1= 2;
*G0 TO' LOOP
*END®

The following is a sample run of the procedures CALLSQRT
and SQRT. The numbers following "ENTER X:" are input data typed
by the user.

ENTER X: 100.0

X= 100.0000 SQRT OF X= 10.0000
ENTER X: 1.0

X= 1.0000 SQRT OF X= 1.0000
ENTER X: O.

X= .0000 SQRT OF X= .0000
ENTER X: 4.0

X= 4.0000 SQRT OF X= 2.0000
ENTER X: ¢

**%x% ALL INPUT DATA HAS BEEN PROCESSED - AT LOCATION 500788

Part I -- Description of the MAD/I langquage

| G-y

[[=" f S | NN

-

Section 10: Example MAD/I Prograas 139

The two independent procedures CALLSQRT and SQRT can be
coabined into one program by making 3QRT internal to CALLSQRT.
SQRT must be declared 'ACCESSIBLE' if it is to be referemced in
other programs. The saample run of this program is identical to
the previous sample run.

*PROCEDURE® CALLSQRT.;
CALLSQRT: *WRITE' (“*EENTER X:'%*%);
READ' ("WF=%), X;
'WRITE®* ("* X=*',WFP,' SQRT OF X=*,WF*") , X,SQRT. (X) ;
GO TO' CALLSQRT;

PROCEDURE® SQRT. (X) ;
PRESET EPS := .0001;
S(RT: tIF* x=0. | X=1., 'RETURN' X;
Y := X;
LOC ™ 2 = (Y+¢X/Y)/2.;
IF .ABS. (Y-2) < EPS, 'RETURN' Z;
Y := 2;
'GO TO' LOOF
tEND?
*END?

Part I -- Description of the MAD/I Language

140 Section 10: Example MAD/I Prograss

10.2__Procedyres HASHIEST and HASH

The procedure HASH maintains a hashed syambol table. It is
called with one argument, the °*CHARACTER'(8) symbol to be
hashed. HASH then computes a key vith a value ranging from O
through 7 which is the hash of the syrbol name. The operator
.AS. is used to treat the syabol as tvo integers in the
computation of the key. Finally, the appropriate thread is
searched for a symbol table entry having the argument as its
name, If no such entry is found, a nev symbol table entry is
allocated using the 'ALLOCATE' statement and inserted at the
head of the appropriate thread. HASH returns the pointer to the
requested symbol table entry.

The procedure HASHTEST requests a symbol as input, calls
HASH with the symbol as the argument, and prints the pointer
returned and the contents of the symbol table entry. HASHTEST
is the main program.

* PROCEDURE' HASHTEST. ;

'DECLARE' 'DEFAULT' 'INTEGER';

*DECLARE' HASH 'ENTRY POINT' 'POINTER';

*DECLARE' PTR 'POINTER';

*DECLARE' SYMENT 'BASED' 'COMPONENT STRUCTURE® (

"EOINTER',
*CHARACTER® (8),
"INTEGER',
*BIT" (8))3
* DECLARE' SYMBOL *'CHARACTER® (8) ;
HASHTEST: *WRITE® ("'&ENTER NEXT SYMBOL:'*");

*READ' ("C8.8%"), SYMBOL;

PTR := HASH. (SYMBOL);

SYMENT .ALLOC. PTR;

'WRITE' ("'SYMBOL TABLE ENTRY AT: ',X8.4,' PTR=',
X8.4,' NAME=',C8.8%"), PTR,
SYMENT (1) ,SYMENT (2) ;

'GO TO' HASHTEST;

*END'

Part I -- Description of the MAD/I Language

[

s

ne

L1

-»

"

e

“m

Section 10: Example MAD/I Prograes U1

*PROCEDURE' HASH, (SYMBOL) ;

'DECLARE DEFAULT' 'INTEGER';
*DLCLARE' SYMBOL 'CHAKACTER' (8) ;
*DECLARE' HASH 'ENTRY POINT' *POINTER';

'DECLARE' SYMENT *BASED!

* POINTER®, <<
'CHARACTER" (8) , <<
*INTEGER', <<
'BIT' (8)) <<

'DECLARE* THWEADS 'FIXED

*COMPONENT STRUCTURE"' (
NEXT SYMBOL >>

SYMBOL NAME >>

STORAGE ALLOC >>

CLASS MODE >>

ARRAY' (0...6) 'POINTER®*;

'DECLARE' FINGER ‘'POINTER';
'*DECLARE' NAMES 'FIXED ARRAY' (2) 'INTEGER';
*PRESET' THREADS := 7 ('NULL PT');

HASH:

(NAMES .AS. (*CHARACTER' (8))) := SYMBOL;

KEY := .ABS. ((NAMES (1) +NAMES(2)) . REN.7) ;
"WRITE' ("?*%%& KEY=',6I#") , KEY;

FINGER := THREADS (KEY) ;
LOOP: *IF' FINGER = 'NULL PT';
"ALLOCATE' SYMENT;

SYMENT (1) := THREADS (KEY) ;
THREADS (KEY) := .PT. SYMENT;

SYMBOL;

SYMENT (2) :
:= SYMENT (3)

SYMENT (4)
"ELSE';
SYMENT .ALLOC. FINGER;

:= 03

*IF' SYMBCL = SYMENT(2), 'GO TO' FOUND;

PINGER := SYMENT(1);
*GO TO' LCCE
YEND';
*RETURN' .PT. SYMENT
*END?

FOUND:

The following is a sample run
and HASH.

ENTER NEXT SYMBOL: a
*%x%kk KEY= 1

of the procedures HASHTEST

SYMBOL TABLE ENTRY AT: 00500068 PTR=00000000 NAME=A

ENTER NEXT SYMBOL: b
xkkk KEY= 2

SY!IBOL TABLE ENTRY AT: 00500080 PTR=00000000 NAME=B

ENTER NEXT SYMBOL: ¢
**k* KEY= 3

SYMBOL TABLE ENTRY AT: 00500098 PTR=00000000 NAME=C

ENTER NEXT SYMBOL: 4
*kkk KEY= 4

SYMBOL TABLE ENTKY AT: 005000B0 PTR=00000000 NAME=D

ENTER NEXT SYMBOL: e

Part I -- Description of

the MAD/I lLanguage

142 Section

*k%x%x KEY= 5

SYMBOL TABLE ENTRY AT: 00500C66
ENTER NEXT SYMBOL: £

*x4%x KEY= 6

SYMBOL TABLE ENTRY AT: 00500C80
ENTER NEXT SYMBOL: g

*%x4% KEY= 0

SYMBOL TABLE ENTRY AT: 00500C98
ENTER NEXT SYMBOL: h

kkk%x KEY= 1

SYMBOL TABLE ENTRY AT: 00500CBO
ENTER NEXT SYMBOL: 1i

*x4%% KEY= 2

SYMBOL TABLE ENTRY AT: 00500CCS8
ENTER NEXT SYMBOL: a

*x%% KEY= 1

SYMBOL TABLE ENTRY AT: 00500068

ENTER NEXT SYMBOL: h
A& ok ek KEY= 1
SYMBOL TABLE ENTRY AT: 00500CBO
ENTER NEXT SYMBOL: aardvark
k%% KEY= 4
SYMBOL TABLE ENTRY AT: 00500CEQ
ENTER NEXT SYMBOL: gquail
*%x%x% KEY= 0
SYMBOL TABLE ENTRY Asf: 00500CF8
ENTFR NEXT SYNBOL: wunerful
k%% KFY= 2
SYMBOL TABLE ENTRY AT: 00500D10
ENTER NEXT SYMBOL: a
*xkx%x KEY= 1
SYMBOL TABLE ENTRY AT:
ENTER NEXT SYMBOL: ¢

00500068

PTR=00000000

PTR=00000000

PTR=00000000

PTR=00500068

PTR=00500080

PTR=00000000

PTR=00500068

PTR=005000B0

PTR=00500C98

PTR=00500CC8

PTR=00000000

*x%%x ALL INPUT DATA HAS BEEN PROCESSED - AT

art 4

-~ Description of the MAD/I lancuage

10: Example MAD/I Prograas

NAME=E

NAME=F

NAME=G

NAME=H

NAMZ=1

NAME=A

NAME=H

NAME=AARDVARK

NAME=QUAIL

NAME=WUNERFUL

NAME=A

LOCATION 5009E0Q

 —

Section 11: The Compiler in *MAD1 143

PART II -- USER'S GUIDE FOR MAD/I IN MTS

Section 11; The Compiler in MIS pPublic File *MNAD1

Contents: The object modules which make up the MAL/I
compiler.

Pur pose: To compile MAD/I programs.

Usage: The compiler is invoked by a RUN command,

specifying *MAD1 as the object file.

logical I/0 units referenced:
SCARDS - The source program to be compiled.

SPRINT - The compiler listings and
diagnostics.

SPUNCH - The resulting object module. This
can be controlled by the DECK
option.

Examples: $SRUN *MAL1
(SCARDS, SPRINT, SPUNCH default to *SOURCE*

SINK, *PUNCH*, respectively)
$RUN *MAD1 SPUNCH=-F1 PAR=NOSOURCE

Description: See Part I of this manual for a description of
the MAL/I language.

Compiler options can be passed by the optional PAR= field
on the RUN command. This field must be the last in the sequence
of specifications on the RUN command. The PAR= field consists
of a list of option specifications separated by blanks or
commas. Many of the option keywords have abbreviations. Some
options have pairs of alternative keywords of the forms
"option", "NOoption". In each case, the ‘“option" keyword
requests a service, and the "NOoption" keyword rejects the
service. Each option has a default. The default value for some
options depends upon whether the compiler is being run in batch
or from a terminal. In case of conflicting options, the right-
most option specification has effect. A list of the option
keywords, along with their abbreviations, defaults, and meanings
follows:

Part II -- User's Guide for MAD/I in MTS

e e e
LA it i’,‘,ﬁl‘ :..1:'

3
-

104 Section 11: The Compiler in *MADA
KEYWORD ABBREVIATION DEFAULT VALUE
SOURCE s Batch: SOURCE
NOSOURCE NS Terminal: NOSOURCE

Requests that a listing of the MAD/I source program he
vritten to SPRINT.

DECK D DECK
NODECK ND
Requests that the generated object module be vwritten
to SPUNCH.
LIST L NOLIST
NOLIST NL

Requests that a 1listing of the generated machiﬂe
instructions and a storage map be written to SPRINT.

MAP M NOMAP
NOMAP NM

Requests that a storage map' showing the storage

assignments of all variables and constants be vwritten to
SPRINT. .

XREF X NOXREF .
NOXREF NX
Requests that a cross-reference table for all the
identifiers in the program bhe written to SPRINT.
ATR A Batch: ATR
NOATR NA Terminal: NOATR
Requests that a list of the attributes of each
identifier be written to SPRINT. :
OPLIST oL Batch: OPLIST
NOOPLIST NOL Terminal: MOOPLIST

Requests that a listing of the option assignments for
this compilation be written to SPRINT.

Part II -- User's Guide for MAD/I in MTS

-

}‘-—6

-

-e

-

o

-

{
-——

Section 11: The Compiler in *MAD1 145

SORMGIN= (m,n) SM= SORKGIN=(1,256)
=m,n
=(m n)
A N

Specifies the left and right margins of the source
program lines to be g and n, respectively, where 1<m<n<256.
All text outside of this range is ignored. For instance,
to read source lines which have sequence-id information in
columns 73 to 80, specify ®=1 and n=72.

FREEFORM FF FREEFORM
LINEFORM . LF

FREEFORM specifies that the input text is completely
free~-form, extending from 1line to 1line as a continuous
sequence of characters, with statements separated by
semicolons. LINEFORM specifies that each input line will
have a semicolon automatically appended to it wunless the
last character (the one at the right margin) 1is the
continuation character. The continuation character is
specified with CCNTCHAR option.

CONTCHAR=cC CC= CONTCHAR=+

Specifies that ¢ is the continuation character to be
used in conjunction with the LINEFORM option.

SOURCETAB=n ST= SOURCETAB=6

Specifies that the source program, if it 1is printed,
be printed beginning in column n, The source progranm
listing itself is controlled by the SOURCE option.

SIZE=(m,n) SIZE=(3,255)
=m,n
=(m n)
=m n

Specifies the sizes of two internal translator tables.
M specifies the maximum nuamber of control sections. N
specifies the wmaximum number of "basetab" entries. These
need not be given except for very large progranms.

Part II -- User's Guide for MAD/I in MTS

146 Section 12: Sample Runs of MAD/I in NTS

Sectiopn 12: Sasple Runs of EHAD/ZI in MIS

J2.1__Sample Rup of CALISORT apd SQRT

The following excerpt from a terminal session shows the
runs of the MAD/I compiler used to generate the sample output of
Section 10.1. Notice that the compiler is run twice, once for
each progras. Also notice that the defaults for teraminal
operation are such that no listings are produced. In this and
all folloving examples 1lowver-case characters are typed by the
user. Lines preceded by a "#" are commands to NMTS. Some lines
have been truncated on the right to fit within the column width
of this report.

#list callsqgrt

> 1 *PROCEDURE' CALLSQRT.;

> 2 CALLSQRT: *WRITE®' ("'GENTER X:'%%):

> 3 *READ' ("WF*%), X:

> [} *WRITE®* ("' X=',WF,' SQRT OF X=',WP*") X,
> 5 *GO TO' CALLSQRT

> 6 *END?

> 7

> 8

> 9

> 10

> 1 *PROCEDURE' SQRT. (X) :

> 12 'PRESET* EPS := .0001;

> 13 SQRT: *IF* X=0. | X=1., "RETURN' IX;

> 14 Y = X3

> 15 LOOP: Z := (Y+X/Y)/2.;

> 16 *IF' .ABS. (¥Y-2) < EPS, 'RETURN' Z;
> 17 Y 1= 2;

> 18 *'GO TO' LOOP

> 19 *END?

#END OF FILE
#run *madl1 scards=callsqrt(1,10) spunch=-load
#EXECUTION BEGINS

MAD/I COMPILER VERSION PR240-093943.

MAD/I COMPILER STATISTIC PASS1 ALLOC PASS 2

CPU TIME (SEC) 1.125 1.575 2.981
ELAPSED TIME (SEC) 2.423 2. 637 8.093

CPU VM INTEGRAL (PG-SEC) 168.693 238,740 456.407 8
MEAN VM SIZE (PGS) 113.569 116.595 121.376 3
DRUM READS 29 27

STATEMENTS 5

DESCRIPTORS 35

#EXECUTION TERMINATED
#run *mad1 scards=callsqrt(11) spunch=-load (last+1)

Part I1 -- User's Guide for MAD/I in MTS

u

&

LY

P

pese

Section 12: Sample Runs of MAD/I in MTS

$EXECUTION BEGINS

MAD/I COMPILER VERSIOR PR240-093943.

MAC/I COMPILER STATISTIC

CPU TINE
ELAPSED TINME

(SEC)
(SEC)

CPU VM INTEGRAL (PG-SEC)

MEAN VM SIZE
DRUM READS
STATEMENTS
DESCRIPTORS

#run -load

(PGS)

¢EXECUTION TERMINATED

#EXECUTION BEGINS

ENTER X:

100.0

X= 100.0000 SQRT OF X=

ENTER X: 1.0
X= 1.0000

ENTER X: O.

SQRT OF X=

X= «0000 SQRT OF X=

ENTER X: 4.0
X= 4.0000

ENTER X: ¢

#&¢*% ALL INPUT DATA HAS BEEN PROCESSED - AT LOCATION 500788
$EXECUTION TERMINATED

Part II -- User's Guide for HMAD/I in HNTS

SQRT OF X=

PASS1
.988
1.3“3
147.653
125.010
1
10
65

10.0000
1.0000
0000
2.0000

ALLOC
1.464
1.654
222.130
125.994
4

PASS2
2.854
3.496

436.374
127.794

w7

148 Section 12: Saaple Runs of MAD/I in HTS

12,2 _sSasple Bun of HASHTEST and HASH

The following excerpt from a tevminal session shows the
runs of the MAD/I compiler used to generate the sample output of
Section 10.2. The option 9] chosen on the first cun caused all
the compiler option assignments to be printed. Likevise, the
source option on both compilations caused the source listings to
be produced. Note that on line 14 of HASH the *NULL PT' has
been replaced by 0. This is necessary due to a minor bug in the
compiler which does not allov 'NULL PT' to vork properly in a
'PRESET' stateament.

tempty -deck

#DONE.

#run *mad1 scards=hashtest spunch=-deck par=source,ol
EXECUTION BEGINS

part II -- User's Guide for MAD/I in HTS

B
.

[S)
.

ot

J

®4

.

-

LX)

-

-

Section 12: Sample Runs of MAD/I in NMTS

MAD/I COMPILEE OPTION ASSIGNMENTS:

9

SOURCE,DECK,NOLIST,SORMGIN= (001,256) , FPREEFORM ,CONTCHAR
SOURCETAB=006,SIZE=(0003,0255) ,COMPILE
NOMAP, NOXREF, NOATR, OPLIST,USER, ADDENDA

MAD/I COMPILER VERSION PR240-093943.

MAD/I COMPILER SOURCE PROGRAM LISTING

0001 'PROCEDURE' HASHTEST.;
0002 'DECLARE' °'DEFAULT' °'INTEGER';
0003 *DECLARE* HASH 'ENTRY POINT' °'POINTER';
coou 'DECLARE* PTR °*POINTER';
0005 'DECLARE' SYMENT °*BASED' °*'COMPONENT STRUCTURE' (
0006 'POINTER',
0007 YCHARACTER"® (8) ,
0008 'INTEGER',
0009 '*BIT*'(8)):
0010 'DECLARE' SYNBOL °*'CHARACTER' (8);
0011 HASHTEST: °*'WRITE® ("*SENTER NEXT SYMBOL:'#*");
0012 'READ®' ("C8.8%") , SYMNBOL;
0013 PTR := HASH. (SYMBOL) ;
0014 SYMENT .ALLOC. PTR;
0015 'WRITE® ("'SYMBOL TABLE ENTRY AT: °',X8.4,°' PTR='
0016 X8.4, ' NAME=',C8.8%"), PTR,
0017 SYMENT (1) ,SYMENT (2) ;
0018 'GO TO' HASHTEST;
0019 END’
MAD/I COMPILER STATISTIC PASS1 ALLOC PASS2
CPU TINE (SEC) 2.151 2.307 3.612
ELAPSED TIME (SEC) 3.370 3.364 4.930
CPU VM INTEGRAL (PG-SEC) 322.617 350. 213 552.274 12
MEAN VN SIZE (PGS) 88.212 88.768 89.635 2
DRUM READS 13 17 4
STATEMENTS 13
DESCRIPIORS 92
$EX{ECUTION TERMINATED

frun *mad?l1 scards
$EXECUTION BEGINS

MAD/I COM
MAD/I CoOM
0001
0002

0003
0004

=hash spunch=-deck (1000) par=s

PILER VERSION PR240-093943.

PILER SOURCE PROGRAM LISTING «ee oo

'PROCEDURE* HASH. (SYMBOL) ;

'DECLARE DEFAULT® 'INTEGER';
'DECLARE* SYMBOL °*CHARACTER® (8);

Part II -- User's Guide for MAD/I in MTS

150 Section 12: Sample Buns of MAD/I in MTS

0005 *DECLARE' HASH 'ENTRY POINT' 'POINTER';
0006 *DECLARE' SYMENT *BASED' "COMPONENT STRUCTURE' (4
0007 "POINTER?', << NEXT SYMBOL >>

0008 *CHARACTER" (8) , << SYMBOL NANE >>

0009 *INTEGER', << STORAGE ATLOC >>

0010 "BIT' (8)); << CLASS MODE >>

0011 *DECLARE' THREADS 'FIXED ARRAY'(0...6) 'POINTER
0012 *DECLARE' FINGER 'POINTER':;

0013 'DECLARE' NAMES 'FIXED ARRAY'(2) *'INTEGER';
0014 *PRESET' THREADS := 7(0);

0015

0016 HASH: (NAMES .AS. ('CHARACTER' (8))) := SYMBOL;

0017 KEY := .ABS. ((NAMES (1) +NAMES (2)) .REN.7);

0018 'WRITE' ("'#%%% KEY=',I*w") KEY;

0019 FINGER := THREADS (KEY) ;

0020 LOOP: 'IF' FINGER = 'NULL PT';

0021 *ALLOCATE' SYMENT;

0022 . SYMENT (1) := THREADS (KEY) ;

0023 " THREADS (KEY) := .PT. SYMENT;

0024 SYMENT (2) := SYMBOL;

0025 SYMENT (4) := SYMENT(3) := 0;

0026 'ELSE';

0027 SYMENT .ALLOC. FINGER;

0028 *IF' SYMBOL = SYMENT(2), 'GO TO' FOUND;

0029 FINGER := SYMENT(1);

0030 "GO TO' LOOP

0031 "END';

0032 FOUND: *RETURN' .PT. SYMENT

0033 *END?

MAD/I COMPILER STATISTIC PASS1 ALLOC PASS2

CPU TIME (SEC) 2.92¢ 3.026 7.363
ELAPSED TIME (SEC) 4.663 4.773 11.367

CPU VM INTEGRAL (PG-SEC) 439.160 459.257 1126.523 20
MEAN VM SIZE (EGS) 92.347 92.970 94.465 2
DRUM READS 29 18 11
STATEMENTS 26

DESCRIPTORS 202 2

#EXECUTION TERMINATED

#run -deck

#EXECUTION BLGINS
ENTER NEXT SYMBOL: a

*k*x*kx KEY= 1

SYMBOL TABLE ENTRY AT: 00500068 PTR=00000000 NAME=A
ENTER NEXT SYMBOL: b

*kkk KEY= 2

SYMBOL TABLE ENTRY AT: 00500080 PTR=00000000 NAME=B
ENTER WEXT SYMBOL: C

k¥ KTY= 3

SYMBOL TABLE ENTRY AT: 00500098 PTR=00000000 NAME=C
ENTER NEXT SYMBOL: d

X%k KEY= 4

Part II -- User's Guide for MAD/I in MTS

Section 12: Sample Runs of MAD/I

SYMROL 7TABLE ENTRY AT: 005000B0O
ENTER HEXT SYMBOL: e

xkkk KEY= 5

SYMBOL TABLE EFTRY AT: 0050068
ENTER NEXT SYMBOL: £

kkkk KEY= 6

SYMBOL TABLE ENTRY AT: 00500C80
ENTER NEXT SYMBOL: g

xkkk KEY= 0

SYMBOL TABLE ENTRY AT: 00500C98
ENTER NEXT SYMBOL: h

*k%kkx KEY= 1

SYMBOL TABLE ENTRY AT: 00500CBO
ENTER NEXT SYMBOL: i

kkkk KEY= 2

SYMBOL TABLE ENTRY AT: 00500CCS8
ENTER NEXT SYMBOL: a

kkkk KEY= 1

SYMBOL TABLE ENTRY AT: 00500068
ENTER NEXT SYMBOL: h

xkkk KEY= 1

SYMBOL TABLE ENTRY AT: 00500CBO
ENTER NEXT SYMBOL: aardvark

kkkk KEY= 4

SYMBOL TABLE ENTRY AT: 00S500CEQ
ENTER NEXT SYMBOL: quail

kkkk KEY= 0

SYMBOL TABLE ENTRY AT: 00500CF8
ENTER NEXT SYMBOL: wunerful
x%k %k KEY= 2

SYMBOL TABLE ENTRY AT: 00500D10
ENTER NEXT SYMBOL: a

xkkk KEY= 1

SYMBOL TABLE ENTRY AT: 00500068
ENTER NEXT SYMBOL: ¢

PTR=02000C00

PTR=00000000

PTR=00000000

PTR=00000000

PTR=00500068

PTR=00500080

PTR=00000000

PTR=00500068

PTR=005000B0

PTR=00500C98

PTR=00500CC8

PTR=00000000

*%*x ALL INPUT DATA HAS BEEN PROCESSED - AT

#EXECUTION TERMINATED

in MTS 151

NAME=D

NAME=E

NAME=F

NAME=G

NAME=H

NAME=1

NAME=A

NAME=H

NAME=AARDVARK

NAME=QUAIL

NAME=WUNERFUL

NAME=A

LOCATION 5009E0

Part II -- User's Guide for MAD/I in MTS

152 Section 12: Sample Runs of MAD/I in MTS

12.3__sample Run of Combined CALLSQORT and SQRT

The following excerpt from a terminal session shows a run
of the MAD/I compiler on the procedures CALLSQRT and SQRT as
combined into one program. All compiler output (except for
internal compiler debugging aids) is turned on in this examgle.
The output is described in some detail below.

The first page consists of the option assignments and
source program listing. Each 1line of the program is given a
line number which is used as a reference in error messages and
object program listing.

The next page gives the storage allocation of the constants
in the program. Other constants are generated as needed and are
printed interspersed with the object program 1listing which
follows. The two-byte and six-byte fields at the beginning of
each line are the control section identification and relocatatle
address (within the control section) of the beginning of the
data. The third field is the text of the constant. All numbers
are in hexadecimal.

The next five pages are a listing of the generated object
program. The object code is preceded by the line or lines which
caused it to be generated. The first three fields are the
control section identification, relocatable address, and text,
as described above. A "+ is printed in lines which set out-of-
line text. There are two types of out-of-line text. First,
instructions which reference addresses not yet generated are
modified (actually, completed) by out-of-line text when the
forward reference is resolved. Second, additional constants and
internal variables are allocated out-of-line as required. The
remainder of the line is a pseudo-assembler code representation
of the 1line. Run~-time syambol table entries and the base tatle
(used for addressability) are generated at tkLe end of the object
program listing.

Next come two pages giving the external symbol dictionary
and relocation dictionary. The notation used in these tables is
similar to that used in other System/360 translators.

The next page of output gives a storage map showing the
allocation of all variables and constants in the program. The
first field gives the <control section identification of the
allocation. If the item has no allocation in this program, "00"
is given as the control section identification. The next field
gives the storage class of the item. The correspondence is as
follows:

01 Static
02 External

Part II -- User's Guide for MAD/I in MTS

§ o

* =
A

Section 12: Sample Runs of MAD/I in MTS 153

03 Formal Parameter
07 Based

The next field gives the displacement within the base table of
the base address constant to be used in referencing this itenm.
Notice tnat formal parameters, external symbols, and Lased
variables always have a unique base table entry, while many
static items may be referenced using the same base table entry.
The last field gives the relocatable address of the item within
the control section.

The last page gives the attributes of each symbol in the
progranm and 1i% self-explanatory. The numeric fields are
identical to those given in the storage map.

#empty -deck
#DONE.
#run *madil1 scards=callsqrt2 spunch=-deck par=s,a,l,m,o0l

#EXECUTION BEGINS

Part II -- User's Guide for MAD/I in MTS

154

0001

Ssection 12: Sample Runs of MAD/I in MTS

MAD/I COMPILER OPTION ASSIGNMENTS:
SOURCE, DECK,LIST,SORMGIN=(001,256) , FREEFORM,CONTCHAR=+
SOURCETAB=006,SIZE=(0003,0255) ,COMPILE
MAP,NOXREF ,ATR,OPLIST,USER,ADDENDA

MAD/I COMPILER VERSION PR240-093943.

MAD/I COMPILER SOURCE PROGRAM LISTING cee ecoe ocee

'PROCEDURE' CALLSQRT.; -

0002 CALLSQRT: 'WRITE' ("'SENTER X:'*");

0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016

"READ' ("WF*"), X;
'WRITE' (' X=',WF,' SQRT OF X=',WF*") ,X,SQRT. (
"GO TO' CALLSQRT;

'PROCEDURE' SQRT. (X) ;
'*PRESET' EPS := .0001;

SQRT: 'IF' X=0. | X=1., 'RETURN' X3

Y := X3

LOOP: Z := (Y¢X/Y)/2.;

'IF' .ABS. (Y-Z) < EPS, 'RETURN' Z;
Y := Z;

GO TIC*' LOOP

'END!

"END!

Part II -- User's Guide for MAD/I in MTS

.

"

Section 12: Sample Runs of MAD/I in MTS 155

STORAGE ALLOCATION

01
01
01
01
01
01
01

000000 " #CALLSQR CSECT

000064 41200000 +
000068 41100000 +
00006C 00000000 +
000070 7DUOE77E7TD6BE6C66B7D +
00008r E6C65C +
00008D 7DSOCSDSE3CSDIUO0E77A +

CONST 2.

CONST 1.

CONST 0.

CONST "' X=',WP,' SQ
CONST "WFx"

CONST “'EENTER X:'*"

Part II -- User's Guide for MAD/I in MTS

156 Section 12: Sample Runs of MAD/I in HTS

MAD/I COMPILER OBJECT PROGRAM LISTING ;.. ces oo

st

02 000000 @CALLSQR CSECT
*0001 'PROCEDURE' CALLSQRT. ;
0002 CALLSQRT: 'WRITE' ("'EENTER X:'%");
02 000000 CNOP 0,4
02 000000 CALLSQRT EQU *
02 000000 90ECDOOC STo 14,12,12(13)
02 000004 S8COF020 L 12,32 (,15)
02 000008 S8EO0CO0C L 14,%STKADR
02 00000C S8EOE004 I 14,4 (,14)
02 000010 SOEODOOS8 ST 14,8(,13)
02 000014 S0DOEOOU ST 13,4(,14)
02 000018 18DE LR 13,14
02 00001A 47FO0F028 B 40 (,15)
02 000020 00000000 DC A (XBASETAB)
02 000024 58CO0F020 L 12,32 (, 15)
02 000028 1B11 SR 1,1
02 00002A 5840C00C L 4,%STKADR
N2 00002E 41EODO4S8 LA 14,72 (,13)
02 000032 98234000 LM 2,3,0(4)
02 000036 90DEH4000 STM 13,14,0(4)
02 00003A 58F0CO14 L 15,#+420
02 00003E ODEF BASR 14,15
02 000040 90234000 STHM 2,3,0(4)
02 000044 58B0OCO0O L 11,0(,12)
02 000048 SOFOBO9C ST 15,XRTNCODE
01 00005C 0000008D + DC A("'GENTER X:°
01 000060 00300C00 + CONST 3148800
01 000058 00000001 + CONST 1
02 00004C 4110BOSC LA 1,#CALLSQR+92
02 000050 5840C00C L 4,XSTKADR
02 000C54 41E0DOYS LA 14,72 (,13)
02 000058 98234000 LM 2,3,0(4)
02 00005C 90DE4000 STHM 13,14,0 (4)
02 000060 S8F0C018 L 15,#+ 24
02 000064 ODEF BASR 14,15
02 000066 90234000 STH 2,3,0(4)
02 00006A SOF0OBO9C ST 15,%RTNCODE
02 00006E 1B11 SR 1.1
02 000070 58u40C00C L 4,XSTKADR
02 000074 41E0DOUSB LA 14,72 (,13)
02 000078 98234000 LM 2,3,0(4)
02 00007C 90DEH4000 STH 13,14,0 (4)
02 000080 S58F0CO01C L 15,#+28
02 000084 ODEF BASR 14,15
02 000086 90234000 STM 2,3,0(4)
02 00008A S50F0BO9C ST 15,%RTNCODE
*0003 *READ' ("“"WF%*t), X;
02 00008E 1B11 SR 1,1
02 000090 5840C00C L 4 ,XSTKADR
02 000094 41EODOUS LA 14,72 (,13)
Part I -- User's Guide for MAD/I in MTS

| mand

[el

!-n-.b

F——

..

000098
00009C
0000A0
0000A4
0000a6
0000AA
000050
000054
00004C
0000AE
0000B2
0000B6
0000BA
0000BE
0000C2
0000cC6
0000Cs8
0000cCC
0000u4
000048
000040
0000D0
0000D4
0000D8
0000DC
0000EO0
0000E4
0000ES8
0000EA
0000EE
0000F2
0000F4
0000F8
0000FC
000100
000104
000108
000104
00010E

*0004

02
02
02
02
02
02
02
02
02
01
01
01

000112
000114
000118
00011C
000120
000124
000128
000122
00012E
000038
00003C
000034

Section 12: Sample Runs of MAD/I in MTS

98234000
90DE4000
58F0C020
ODEF

90234000
SOF0BO9C
0000008a
00300300
00000001
4110B050
58 40C00C
41E0DOUS8
98234000
90DE4000
58F0C018
ODEF

90234000
50F0B0O9C
0000000C
00720400
00000001
4110B044
5840C00C
4L1EODO4US
98234000
90DE4000
S58F0C024
ODEF

90234000
50F0B0O9C
1B11

5840c00C
41E0DO4S8
98234000
90DE4QCO
58F0C01C
ODEF

90234000
S50F0B09C

'WRITE®

1B11

58u40C00C
41E0DOUS
98234000
90DE4000
S8F0CO14
ODEF

90234000
S0F0B09C
00000070
00301400
00000001

LM 2,3,0(4)
STM 13,14,0(4)
L 15,#+32
BASR 14,15
STM 2,3,0(4)
ST 15,%RINCOLE
+ DC A ("HF*n)
+ CONST 3146496
4+ CONST 1
LA 1,%CALLSQR+80
L 4 ,XSTKADR
LA 14,72 (,13)
LM 2,3,0(4)
STM 13,14,0(4)
L 15,#+24
BASR 14,15
ST 2,3,0(4)
ST 15,%RTNCODE
+ DC A (X)
4+ CONST 7472128
4+ CONST 1
LA 1,#CALLSQR+68
L 4 ,XSTKADR
1a 14,72 (,13)
LN 2,3,0(4)
STH 13,14,0 (4)
L 15,4436
BASR 14,15
STM 2,3,0(4)
ST 15,%RTNCODE
SR 1,1
b 4 ,%STKADR
LA 14,72 (, 13)
LM 2,3,0(4)
STM 13,14,0 (4)
L 15,4+ 28
BASR 14,15
STM 2,3,0(4)
ST 15,%RTNCODE
(n* X=*_,WF,' SQRT OF X="',WF*") X,6SQOR
SR 1,1
L 4 ,XSTKADR
LA 14,72 (,13)
LM 2,3,0(u)
STM 13,14,0 (4)
L 15,#+20
BASR 14,15
STM 2,3,0(u4)
ST 15,%RTNCODE
+ DC A("Y X=t',WF,"
+ CONST 3152384
+ CONST 1

157

Part II -- User's Guide for MAD/I in MTS

158

02
02
02
02
02
02
02
02
02
01
01
01
02
02
02
02
02

02
02
02
01
01
01
02
02
02
02
02
02
02
02

02
02
01
01
01
02
02
02
02
02
02
02
02
02
02
02
02
02
02

000132
000136
00013A
00013E
000142
000146
00014A
00014cC
000150
00002C
000030
000028
000154
000158
00015C
000160
000164
000168
00016C
000 16E
000172
000020
000024
00001C
000176
00017A
00017E
000182
000186
000 18A
000 18E
000192
000194
000198
00019C
000014
000018
000010
000140
0001A4
0001A8
0001AC
0001BO
0001BUY
0001B8
0001BA
000 1BE
0001C2
0001Ct
0001C8
0001CC
0001D0

Section 12: Sample Runs of MAD/I in MTS

4110B038 LA 1,#CALLSQE+56
58u40C00C L 4,%STKADR
41E0DO4S LA 14,72(,13)
98234000 LM 2,3,0(4)
90DE&4000 STH 13,14,0 (4)
58F0C018 L 15,8+ 24
ODEF BASR 14,15
90234000 STHM 2,3,0(4)
SOFOB0SC ST 15,%RTNCODE
0000000C + DC A (X)
00720400 + CONST 7472128
00000001 + CONST 1
4110B02C LA 1,#CALLSQR+44
5840C00C L 4,%XSTKADR
41EODOUS LA 14,72 (,13)
98234000 LM 2,3,0(4)
90DE4000 STH 13,14,0 (4)
SBFOCQ24 L 15,4+ 36
ODEF BASR 14,15
90234000 STH 2,3,0(u)
SOF0BO9C ST 15,%RTNCODE
0000000C + DC A (X) :
00720400 + CONST 7472128
00000001 + CONST 1
41108020 LA 1,#CALLSQR+32
5840C00C L 4 ,%STKADR
41EODOYS LA 14,72, 13)
98234000 Ln 2,3,0(4)
90DEU00O0 STH 13,14,0(4)
S8A0C000 L 10,0(,12)
41FO0AQO00 LA 15,SQRT
ODEF BASR 14,15
90234000 STHM 2,3,0(4)
50F0B09C ST 15,%RTNCODE
7000B0A0 STE 0,%TMP0001
000000A0 + DC A(XTMPO001)
0072C400 + CONST 7472128
00000001 * CONST 1
4110B014 LA 1,#CALLSQR+20
S840C00C L 4 ,%STKADR
41E0DOUS LA 14,72 (,13)
98234000 LN 2,3,0(4)
90DE4000 STHM 13,14,0(4)
S8F0CO024 L 15,4+ 36
ODEF BASR 14,15
90234000 STHM 2,3,0()
SOF0B09C ST 15,%RTNCODE
1B11 SR 1,1
£840C00C L 4 ,XSTKADR
41E0DOUS LA 14,72 (, 13)
38234000 LM 2,3,0(4)
90DE4000 STHM 13,14,0 (4)
Part II -- User's Guide for MAD/I in MTS

[N]
] @ e———

[—""
L &

LX)

02 0001D4
02 0001D8
02 0001DA
02 0001DE
*0005
02 0001E2
02 000028
02 00C1E4
02 000 1E8
*0006
*0007
*0008
01 000000
*0009 SQ
02 0001EC
02 0001EC
02 00018C
02 000190
02 0001EC
02 0001FO
02 000 1F4
02 0001F8
92 0001FC
02 000200
02 000204
02 000206
02 00020C
02 000210
02 000214
02 000218
02 00021C
02 000220
02 000224
02 000228
02 00022C
02 000230
02 000234
02 000238
02 00023C
02 000232
02 000236
02 00023C
02 000240
02 000244
02 000248
02 000 24C
02 000250
02 000246
02 00024a
02 000250
02 000256
02 00025C

Section 12: Sample Runs of MAD/I in MTS 159
58F0C01C L 15,8+28
ODEF BASR 14,15
90234000 STHN 2,3,0(4)
SO0FOB0O9C ST 15,%RTNCODE
GO TO' CALLSQRT;
1B11 SR 1,1
0 EQU CALLSQRT+40
5890C008 L 9,8(,12)
47rP09028 B ICALLSQR+40
PROCEDURE' SQRT. (X):
YPRESET' EPS := .0001;
3A2AFP31D + CONST .0001
RT: YIF' X=0. | X=1., 'RETURN®' X;
CNOP 0,4
SQRT EQU *
c008 +
A1EC +
90ECDO0C STH 14,12,12(13)
S8COF020 L 12,32 (,15)
58 E0CO00C L 14 ,%STKADR
S8EOQEQ0O4 L 14,4 (,14)
SOEODO08 ST 14,8(,13)
SODOEOOY ST 13,4(,14)
18DE LR 13,14
47F0F028 B 40(,15)
00000000 DC A (XBASETAER)
S8CO0FP020 L 12,32 (,15)
58201000 L 2,0, 1)
5020C010 ST 2,8+16
58B0C010 L 11,16(,12)
78208000 LE 2,X
S8A0C000 L 10,0(,12)
7920A06C CE 2,=0.
92FFAOAY MVI XTHPO001,"FF"X
5890C000 L 9,0(,12)
47809000 BE XFLA0002
9200A0AY MVI %*THP0001,0
XPLA0002 EQU *
€008 +
923Cc .
79201068 CE 2,=1.
92FFAOAG MVI XTHP0O002,"FP"X
5880C000 L 8,0(,12)
47808000 BE %*PLAO003
920040A6 MVI %*T8P0002,0
XFLAO003 EQU *
Cc008 .
8250 +
D200AOASAQAYL " HvC KTHP0003(1) ,%T
D600AOASAOAG ocC XTHPO003(1) ,XT
9500A0A5 CLI %*TNMP0003,0

Part II -- User's Guide for MAD/I in NTS

160 Section 12: Sample Runs of HAD/I in HTS
02 000260 5870C000 L 7,0(,12)
02 000264 47807000 BE KPLDO0OS
02 000268 3802 LER 0,2
02 00026A 58DODO0Y L 13,4 (,13)
02 00026E 98ECDOOC LN 14,12,12(13)
02 000272 1BPF SR 15,15
02 000274 O7FE BR 14
02 000276 XPLDO00S EQU *
02 000262 c008 +
02 000266 7276 +
*0010 Y := X;
02 000276 S5&B0OCO000 L 11,0(,12)
02 000272 58A0C010 L 10,16 (,12)
02 00027E D203BO04A0OO Hve Y(4),X
*0011 LOOP: 2 := (Y*X/Y)/2.;
02 000284 LOOP EQU *
02 000284 S8BOCO10 L 11,16 (, 12)
02 07,0288 7820B000 LE 2,X
02 00028C 58A0C000 L 10,0(,12)
02 000290 7D20A004 DE 2,Y
02 (000294 7a20A004 AE 2,Y
02 000298 7D20A064 DE 2,=2.
02 00029C 70201008 STE 2,2
*0012 *IF' .ABS. (Y-2) < EPS, 'RETURN' 2;
02 000220 7820A004 LE 2,
02 0002A4 7B20A00S8 SE 2,2
02 0002A8 3022 LPER 2,2
02 0002AA 79204000 CE 2,EPS
02 0002AE 5890C000 L 9,0(,12)
02 0002B2 47809000 BNL LFLD0007
02 000286 7800A008 LE 0,2
02 0002BA 58DODOOY L 13,4(,13)
02 0002BE 98ECDOOC L 14,12,12(13)
02 0002C2 1BFF SR 15,15
02 0002C4 O7FE BR 14
02 0002C6 XFLDO007 EQU *
02 0002BC C008 +
02 0002B4 92C6 +
*0013 Y := 2Z;
02 0002C6 58B0CO0O L 11,0(,12)
02 0002CA D203BO0OU4BOOS MVC Y(4),2
*0014 '*GO TO' LOOP
*0015 *END?*
02 0002D0 58A0C008 L 10,8(,12)
02 0002b4 47FOA284 B LOOP
*0016 YEND?
*0016 @ICODEENDOFFILE

RTST ENTRIES FOR BILOCK %BLN0O0OO1

RTST ENTRIES FOR BLCCK %BLN0002

part II -- User's Guide for MAD/I in NTS

)
e

0000A8
00020C
000020
0000A8
0000AC
0000BO
0000B4
0000B8
0000BC
0000C9O
0000C4
0000C8
0ooocc

Section 12: Sasple Runs of MAD/I in MTS

000000A8
000000A8
00000000
000000A8
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

L B K R K K K B B R

Part II -- User®’s Guide for MAD/I in MNTS

XBASETAB EQU XBASETAB

162 Section 12: Sample Runs of MAD/I in MTS

EXTERNAL SYMBOL DICTIONARY (SYMBOL,TYPE,ID,ADDR,LENGTH/LDID)

#CALLSQR PD 01 000000 0000DO

@CALLSQR SD 02 000000 0002D8

MADSTACK ER 03 -
CALLSQRT LD 000000 000002

MADWRITE ER 04

FORMAT ER 0S

ENDIOP ER 06

MACREAD ER 07

IOoP ER 08

Part II -- User's Guide for MAD/I in MTS

S

P

.e

-

1
LY

* o

»e

-

-

RELOCATION DICTIONARY

01 01 ocC
01 01 oOcC
01 01 oC
01 01 OC
01 01 oOcC
01 01 OcC
01 01 oOcC
02 01 OC
02 01 OcC
01 01 ocC
01 01 OcC
01 02 oOcC
01 03 ocC
01 04 oOC
01 05 oC
01 06 OC
01 07 oOcC
01 08 oOC
02 000000

Section 12: Sample Runs of MAD/I in MTS

00005C
000050
000044
000038
00002C
000020
000014
00020C
000020
00008
0000AC
000080
0000BY
0000BC
0000CO
0000C4
0000C8
0000CC

(P.ID,R.ID,FLAGS,ADDRESS)

END

CALLSQRT

Part II -- User's Guide for MAD/I in MTS

163

164

Section 12: Sample Runs of MAD/I in MTS

STORAGE MAP

00
00
00
00
00
00
01
01
01
01
01
01
01
01
01
01
01
01

02

02
02

02
02
02
02
02
03
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01

0014
0018
001C

000004
000005
000006

0020 000007
0024 000008

0010

000000

0000 000000

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0008

000004
006008
00000C
000064
000068
00006C
000070
00008A
00008D
00009C
0000A8
000000

0008 0001EC

0008

000284

Part II -- User's Guide for MAD/I in MTS

MADWRITE
FORMAT
ENDIOP
MADREAD
IOP

X

EPS

Y

Z

X

2.

1.

0.

"e X:l'uF'l

NWPF%kn

WYEENTER X:'xn

XEINCODE
%EASETAB
CALLSQRT
SQRT
LOOF

SQRT OF X=' ,WF*"

L . |

et e ems el b

Section 12: Sample Runs of MAD/I in MTS 165

SYMBOL ATTRIBUTES

BLOCK %BLNOOO1 NUMBFR UF SYMBOLS=19

'*DEFAULT' 'FLOATINGSHORT* 00 00 0000 000000
ZRTNCODE 'INTEGERLONG' 01 01 0000 00009C
CALLSQRT 'ENTRYPOINT' 02 01 0008 000000 ' ACCESSIBLE'
RESULT= 'FLOATINGSHORT®
ENDIOP 'ENTRYPOINT' 00 02 001C 000006 'EXTERVAL'
EPS '*PLOATINGSHORT' 01 01 0000 000000
FORMAT 'ENTRYPOINT' OC 02 0018 000005 *EXTERNAL®
IOP 'ENTRYPCINT' 00 02 0024 000008 *EXTERNAL!
MADREAD 'ENTRYPOINT' 00 02 0020 000007 'EXTERNAL'
MADWRITE °'ENTRYPOINT' 00 02 0014 000004 *EXTERNAL'
SQRT 'ENTRYPOINT' 02 01 0008 0001EC
RESULT= 'FLOATINGSHORT'
X *FLOATINGSHORT' 01 01 0000 00000C
Y 'FLOATINGSHORT' 01 01 0000 000004
Z 'FLOATINGSHORT' 01 01 0000 000008
"t X=',WF,' SQRT OF X=',WF*" 'CHARACTER' 01 01 0000 000070

LENGTH=26

WYEENTEE X:'*" 'CHARACTER' 01 01 0000 00008D
LENGTH=12

WWF%" ¢CHARACTER' 01 01 0000 00008A
LENGTH=3

O. 'FLOATINGSHORT' 01 01 0000 00006C
1. 'FLOATINGSHORT* 01 01 0000 000068
2. 'FLOATINGSHORT' 01 01 0000 000064

BLOCK %BLN000O2 NUMBER OF SYMBOLS=2

LOOP 'TRANSFERPOINT' 02 01 0008 000284
X *FLOATINGSHORT' 00 03 0010 000000 (FORMAL PAR)

MAD/I COMPILER STATISTIC PASS1 ALLOC PASS2

CPU TIME (SEC) 2.115 2.649 10.213
ELAPSED TIME (SEC) 6.067 6.946 29.114

CPU VM INTEGRAL (PG-SEC) 316.617 402.356 1565.634 22
MEAN VM SIZE (BGS) 79.199 79.600 81.137 2
DRUM READS 57 717 245 3
STATEMENTS 15

DESCRIPTORS 100 1

#EXECUTION TERMINATED
#run -deck map

ENTRY = 5001A8 SIZE = 00802D

NAME VALUE T RF NAME VALUE T RF NAME VALUE

Part II -- User's Guide for MAD/I in MTS

166 Section 12:

GETSPACE 20DD9E
SYSTEM 2157CC
GETFD 218878
SPUNCH 218B58
WRITE 218C04
2CALLSQR 5001A8
MADREAD 5005F0
I0P $0077C
MADSTACK 503000
IOHOUT 504114
IOHERP 508000
ROPEN 50BOCE
PCLOSE 50B1CO

#EXECUTION BEGIN
ENTER X: 100.
X= 100.0000
ENTER X: 1.0

X= 1.0000
ENTER X: 0.

X= .0000
ENTER X: 2.0
X= 2.0000
ENTER X: 4.0
X= 4.0000

ENTER X: ¢

* * ¥ ¥ *

50018

*
*

*503000

*

*503F18

S
0
SQRT
SQRT
SQORT
SQRT

SQRT

OF

OF

OF

OF

OF

Sy

Sample Ruas of MAD/I in MTS

FREESPAC 20EO09E
ERROR 2157F6
SCARDS 218B34
SERCOM 218B6A
LCSYMBOL 2197D0
SPIE 500480
MADWRITE 50061E
ENDIOP 5007C2

IOH360 504000
IOHETC 50483C

GLAP

RCLOSE 50B148.

504000

10.0000
1.0000
.0000
1.4142

2.0000

*504000 IOHIN

* LOAD 20F7B0O
* PGNTTRP 2181CC
* SPRINT 218B46
* READ 218BES
* #CALLSQR 5000D8
*500480 MADIO S00SFO
* FORMAT 50073A
* MDIOPSCT 500958

5040F0

* ONEDATIM 50492C

*506988 IOPKG
* POPEN

O**** ALL INPUT DATA HAS BEEN PROCESSED - AT LOCATION

#EXECUTION TERMINATED

part 11 -- User's Guide for MAD/I in MTS

50B000
S0B174

00768

T |
»

-

-w

-

-

Section 13: MAD/I Error Messages

Section_13: MAD/I Error Messages

This section has not yet been written -- sorry.

Part II -- User's Guide for MAD/I in MTS

167

168 Section 14: Object Module Description

The alignment attribute of an item specifies a constraint
on the positioning of its allocated storage. The alijnment
attribute for an item is taken as the pmaxjpum of the value
explicitly declared through the 'ALIGN' keyword (if any) and the
alignment implied by other attributes of the itenm. The wvalid
alignment values and their definitions are:

Any byte boundary.

Any halfword boundary.
Any fullwvord boundary.
Any double-word boundary.

DEN =

Mode Representations

The following table gives the internal representations used
for the various MAD/I modes. Representation terminology is
defined in the IBM System/360 Principles of Operation manual.
The "length'" given is the length in bytes.

Mode Alignment Length Representation

'INTEGER SHOKT' 2 2 Halfword fixed-point number.

*INTEGER LONG' 4 4 Fullvord fixed-point number.

'FLCATING SHORT' 4 4 - - Short floating-point numter.

'FLOATING LONG' 8 8 Long floating-point number.

'PACKED' (n) 1 n Packed-decimal number.

BIT (n) - - n bits, allocated such that
all bits are contained in one
fullvord.

*BOOLEAN! 1 1 A logical byte; all bits 1

represents 'TRUOE* and all
bits 0 represents °'FALSE'.

'CHARACTER' (n) 1 n Variable-length logical
information; i.e., n bytes

Part I1 -- User's Guide for MAD/I in MTS

——

r-.—nn

1

[

et

it o T i L o

Section 14: Object Module Description 169

'VARYING CHARACTER' (n)
2

'FILE NAME®

*TRANSPER POINT®

*FIXED ARRAY' (—)

'VARYING ARRAY' (—)

'COMPONENT STRUCTURE®

*ALTERNATE' (—)

*POINTER®

'ENTRY POINT®

*ENTRY NAME®

(—)

n+2

representing n characters in
EBCDIC.

The halfword fixed-point

number representing the
current length of the
character string, followed by
the characters, one per byte.

Fullword address of a control
block in the MAD/I
input/output support tables.

The first instruction at the
transfer point.

The component values, laid
out by the array sequencing
rule. The alignment and
length are determined as in
Section 3.1.2.1. There may
also be an array dope vector,
as described below.

See 'FIXED ARRAY' above.

The component values, laid
out in the order declared.
The alignment and length are
determined as in Section
3.1.2.2. There may also be a
dope vector, as described
below.

The alternative values,
overlaid one "atop" the
other. The alignment and
length are determined as in
Section 3.1.2.3.

Fullword address of the itenm
pointed to.

The first instruction at the
entry point.

Pullword address of the entry
point followed by the
fullword address of the
appropriate environment
information.

Part II -- User's Guide for MAD/I in MTS

170 Section 14: Object Module Description
Axray Dope Vectors

An array dope vector is used to compute the displacement of
a component within an array. The dope vector for an n-dimension
array consists of the 3*n+1 items: n, L(%1), U(1), N(1), <eep
L(n), U(n), M(n), vhere each item is a fullvord fixed-point
number. p is the number of dimensions of the array, L(i) is the
lover bound of the i-th subscript, U(i) is the upper bound of
the i-th subscript, and M(i) is a multiplier used to compute the
displacement of a component. The displacement of the component
having subscripts (S(1), ..., S(n)) is computed as followvs:

-2V Ii>

displacement = [S(i) - L(i)] * M(i)

The upper bounds, U(i), are not used in this computation, but
can be used to check subscript ranges.

For example, the declaration

*DECLARE' A 'FIXED ARRAY' (0...10, S5...20, 400) *INTEGER®

produces the array dope vector (3, 0,10,25600, 5,20,1600,
1,400,4).

omponent _sStructure Dope Vector

——— — - e s ————

The dope vector for a component structure having 1}
components consists of the n+1 items: n, D(1), ..., D(D). B is
the number of components, D(i) is the displacement of the i-th
component from the beginning of the component structure. Each
item is a fullword fixed-point number.

For example, the declaration

'DECLARE' A 'COMPONENT STRUCTURE' ('INTEGER SHORT',
'FLOATING LONG', *BIT* (8))

produces the dope vector (3, 0, 8, 16).

The format of the run-time symbol table is still in a state
of flux, and is not defined here.

part II -- User's Guide for MAD/I in NTS

(L

e T -

[Y]

S

-

-

Section 15: Assenbler Coding Peature 171

Section 15: Assembler Codjing Feature

The assembler coding feature provides a aminimal language
facility for coding machine operations that cannot be expressed
directly in MAD/I. Syntactically, the assembler coding feature
consists of a compound statement in the MAD/I language. The
scope of this statement consists of two parts: declarations and
assembler-language statements. The machine code generated by
the statement consists of the machine code specified by the
asseabler code in the statement scope, interspersed with
compiler-generated machine code necessary to load base
registers.

1.1 _ENIER ASSEMBLER CODE' Statement

The assembler coding feature statement is a compound
statement which has a frefix of the fora

YENTER ASSEMBLER CODE* ;

Note that only the long form of the compound statement is legal.
The scope of the *"ENTER ASSEMBLER CODE' statement (abbreviated
YENTASM') does not consist of MAD/I statements, but rather
declarations peculiar to the 'ENTER ASSEMBLER CODE' statement
followed by assembler code instructions. The individual
declarations and assembler code instructions are separated by
seaicolons. The statement is terminated by the keyword ‘*END‘.

15, 1.1 __Declarations

There are three declarations which can be specified in the
scope of an ‘'ENTER ASSEMBLER CODE®' statement. These are
'COVER', 'LABEL*, and °'RESERVE'. Each declaration consists of
one of the above three keywords folloved by a 1list of
identifiers and possibly constant symbols, separated by commas.

154 321.1__*COVER®

The 'COVER' declaration is used to guarantee that certain
identifiers or constant symbols (not d-expressions) in the NAD/I
program have base register coverage throughout the scope of the
'ENTER ASSEMBLER CODE®' statement. ‘'COVER' should be used only
for those identifiers and constant symbols for which compiler-
generated load instructions preceding the assembler code
instruction cannot be tolerated, because °*COVER® reserves
registers for base coverage for each item in its list. One case
in which °*COVER®' shoyld be used is for the identifiers and
constant symbols referenced by the subject instruction of an
EXECUTE instruction, since the insertion of 1load instructions

Part II -- User's Guide for MAD/I in NTS

172 Section 15: Assembler Coding Peature

preceding the subject instruction (to acquire addressability)
would cause a load instruction, rather than the anticipated
instruction, to be executed. The folloving exasple causes up to
four general registers to be reserved for use as base registers,
one each for the two MAD/I identifiers QQSV and X, and one each
for the tvo constant sysbols 15.3E-5 and 1:

'*COVER' QQSV,X, 15.3E-5,1;

15.1.1.2 _*LABEL'

The *LABEL' declaration is used to declare that certain
identifiers will appear as labels within the scope of the 'ENTER
ASSEMBLER CODE' statement. The 1labels are defined by the
occurrence of a colon (:) folloved by the label in what norsally
would be called the 1label field of some assembler code
instruction. For exanmgle:

'LABEL* QQSV;
[J
®

TQQsv L R3,X;

The scope of a 'LABEL' identifier is restricted to the ‘'ENTER
ASSEMBLER CODE! statement, and is independent of other
occurrences of the same syabol outside the statement.

The ‘'RESERVE' declaration is used to reserve general
rejisters for the use of the assembler language instructions
within the score of the '"ENTER ASSEMBLER CODE' statement. Each
list item <can either be an integer constant symbol, in which
case a specific general register is reserved, or an identifier,
in which <case any available general register is reserved.
Identifiers representing registers are known only inside the
scope of the 'ENTER ASSEMBLER CODE' statement wvhich defines
them, and are independent of the same symbols used outside of
that statement. It is best to mention specific registers first
and have the 'RESERVE' declaration precede any 'CCVER!
declarations to insure that the register vanted has not already
peen assigned to an identifier or as a base register. ALl
general registers other than registers 12 and 13 are available.
The conmpiler will feel free to use any registers which have not
been reserved. TFor example, the declaration

*RESERVE' 1,2,3,R1;
reserves general registers 1,2, and 3, plus one other arbitrary

general register whose designation will be R1.

Part II -- User's Guide for MAD/I in MTS

pess- 4

-e

éa

e

-

-a

ey

Section 15: Assembler Coding Feature 173

3.3, Assembler Code Format

Assembler code instructions are written in much the same
manner as in the assembler language, except that they are free-
form and must be separated by semicolons. All the wmachine-
instruction operation codes are valid, including the privileged
operations, operations unique to the MNodel 67, and RFQ-ed
instructions on the University of Michigan machine such as mixed
floating-point, Swap Register, and the Search List instruction.
None of the assembler instructions (such as EQU, ORG, DC, or
USING) are valid.

The structure of the operands in the assembler 1language
code is the same as in the assembler language (e.g., R,D(X,B)).
However, the expressions which can be used as operands are much
Bore restricted.

There are tvo kinds of "values" in the assembler code
operand expressions: absolute and [relocatable. Relocatable
values are storage _assigpmenpts. They are converted into base-
displacement pairs when used as operands in assembler code
instructions. Absolyte values, on the other hand, are
equivalent to seif-defining terms in the assembler language.
They are used for register numbers, displacements, and immediate
data.

The following can be used as expression operands:

1. Unsigned-integer constant symbols, which have the usual
integer absolute "value". For example, 10, 4, 0, and so
forth.

2. Identifiers which have been 'RESERVE'ed, which have as
their value the general register corresponding to theam,
vhich is an absolute "value". For example, R1 following
the declaration 'RESERVE' R1;

3. Constant symtols (not @-expressions) preceded by an
equal sign (=), which have as their value the relocatable
storage assignment of the corresponding constant in the
prograan. For example, =1, =10.5, ="FFF00000"X, and so
forth.

4. Identifiers whith appear as labels within the scope of
the 1'ENTER ASSEMBLER CODE' statement, which have as their
value the relccatable storage assignment of the
corresponding asseambler code instruction.

5. All other identifiers have as their value the
relocatable storage assignment of the corresponding
identifier in the frogran.

Part II -- User's Guide for MAD/I in MTS

174 Section 1%: Assembler Coding Feature

The siaplest of assembler code operands is one of the foar
types of expression operands described above. These expression
operands can also be combined into more complicated expressions.
These expressions can then be used as assembler code operands.
The operators which can be used in forming expressions are
described below:

1. The addition operator (+), can be used to add together
the values of two operands. The result is absolute if both
operands are absolute, relocatable if either of the ¢two
operands is relocatable. Meaningless values result if toth
operands are relocatable. One must be very careful in
computing relocatable values, because the result may fall
outside of the area covered bty the base register. For non-
structured modes, the entir> storage assigned falls within
the base-area. For structured modes, only the first eight
bytes necessarily fall within the area. Calculations
involving storage assignments of executable code are
dangerous, because the compiler may begin a new base-area

at any point in an instruction sequence.

2. The pretix operator .LN. accepts as an operand an
identifier within the program or a constant symbol preceded
by an equal sign, and returns as its result an absolute
“value" which is the compile-time length of the storage
assigned to the operand.

Part 1I -- User's Guide for MAD/I in MTS

e Pov—

ey

-

.

e

Section 15: Assembler Coding Feature 175

15.2__Interface_Conventions

The assembler code instructions written in the scope of the
'ENTER ASSEMBLER CODE' statement of course are located in the
larger environment of the code generated for all the statements
in the program. Certain conventions are followed in the machine
code generated by the MAD/I compiler and it is necessary for the
user to be aware of some of them, although many steps have Leen
taken to make these conventions as painless and transpareat as

possible.

15.2.1 _Entry_into the 'ENTER ASSEMBLER CODE'_ Statement

The 'ENTER ASSEMBLER CODE' statement can be entered in two
ways, by "falling" into it under the normal sequencing rules of
the language or by branching t» (or calling) the 1label on the
'ENTER ASSEMBLER CODE' statement. In either case the execution
of the assembler code within the statement begins with the first
instruction. It is not possible to enter the assembler language
code at any point other than its beginning. The following
operations are performed preceding the first assembler language

statement:

1. If the '"ENTER ASSEMBLER CODE' statement has a label, all the
usual code generated for a label is produced, including entry
point code if the label is of 'YENTRY POINT' mode.

2. All unstored values in both the floating-point and general
registers are stored into their respective variables.

3. All information concerning the contents of the registers ‘-«
forgotten. This essentially makes all the floating-po
registers and all the general registers other than 12 and

available for use.

4. The 'COVER' and °'RESERVE' declarations within the scope of
the 'ENTER ASSEMBLER CODE' statement are processed in the order
in which they appear. For each general register reserved the
status of the register is changed to indicate that it cannot be
used by the compiler for any purpose. For each MAD/I identifier
or constant symbol covered, an available register is loaded with
a base to cover the variable and its status is changed to
indicate that it contains a base address and cannot be changed.

The result of these steps is that:

1. All floating-point registers are available for use by the
assembler code.

2. All general registers (except 12 and 13) are available for

part II -- User's Guide for MAD/I in MTS

176 Section 15: Assembler Coding Feature

use by the assembler code. General registers are reserved
explicitly and implicitly by the *RESERVE! and *COVER*
declarations.

3. All general registers not reserved through ‘RESERVE' or
'COVER' are available to the compiler for use as base registers.

4. General register 12 couantains a base register used by the
compiler to maintain addressability. It covers the area called
®*BASETAB, which contains the values put into base registers.

5. General register 13 contains the address of the save area to
be vuvsed for «calling other subroutines. This contains a fkack
pointer to the save area provided by the program which called
the 'PROCEDURE' containing the 'ENTER ASSEMBLER CODE' statement.
In calling another subroutine, it is necessary to increment and
decrement the stack information used by MAD/f programs (the
stack contains the save areas). This will be shown in one of
the examples in Section 15.3.

6. All variable values are located in memory and must be
referenced from nmemory. The fact that a variable value might
also be in a register cannot be taken advantage of from the
assembler code.

15.2.2 Exit from the 'ENIER ASSEMBLER CODE' sStatement

The 'ENTER ASSEMBLER CODE* statement can be left in three
ways: by "falling" out of the bottom following the normal
sequencing conventions, by branching to a label or 'ENTRY NAME'
variable, or by <calling an *ENTRY POINT' or *ENTRY NAME'. 1In
each case there is no automatic storing of changed variable
values from the registers. It is eatirely up to the user to
insure that all changed variable values are stored before the
'ENTER ASSEMBLER CODE' statement is exited. Furtherwore, he
must follow all normal calling sequence conventions when calling
other subroutines, including the incrementing and decrementing
of stack information.

At the physical end of the scope of the 'ENTER ASSEMBLER
CODE' statement, all reserved registers are once again made
available to the comfpiler.

Famt T° - _sev's Guid: for AAD/I in HTS

e

b

Section 15: Assembler Coding Feature 177

15.3__Examples

Below are several example *ENTER ASSEMBLER CODE!
statements. In each example, some operation is performed which
cannot be adequately expressed in MAD/I. The examples attempt
to show the correct balance between the use of MAD/I and the use
of the assembler coding feature, with as much of the operation
as possible being expressed directly in MAD/I. An attempt has
been made to give useful examples that might indeed be wused 1in
actual programs. Each example contains line numbers (which are
not a part of the actual code) and is followed by prose
explaining each line of the example.

15.3.1__Generating_a_sStandard_OS_Type (I) S _Call

The MAD/I and standard 0S type (I) S calling sequences
differ 1in the structure of the parameter list. This difference
in structure is transparent unless one is testing for variatle-
length parameter lists. In the ctandard parameter list, the end
of the parameter list is indicated by having bit zero of the
last parameter address set to one. In MAD/I, on the other hand,
the number of parameters is specified in the word preceding the
parameter list. This example calls the subroutine F passing
three parameters, A, B, and C, following the standard calling
conventions. This example also illustrates the incrementing of
the stack address, which is necessary if the subroutine F causes
a call on another subroutine written in MAD/I.

1 *DECLARE' F 'EXTERNAL* 'ENTRY POINT®;

2 *DECLARE®* PARS 'FIXED ARRAY' (3) °*POINTER';

3 ‘DECLARE®' RINCODE 'INTEGER';

4 PARS (1) := .PT. A; PARS(2) := .PT. B; PARS(3) :=
«PT. C;

5 PARS (3) := PARS(3) .V. "80000000"X ;

6 *ENTER ASSEMBLER CODE';

7 *RESERVE' 0,1,2,3,4,14,15;

8 L 4,%STKADR;

9 LA 14,72(0,13) ;

10 LM 2,3,0(4);

11 STM 13,14,0(4) ;

12 LA 1,PARS;

13 LA 15,F;

14 BALR 14,15;

15 STM 2,3,0(4);

16 ST 15,RTNCODE;

17 STE 0,RESULT;

18 YEND?*;

1 declares F to be 'EXTERNAL' ¢*ENTRY POINT'. This 1is done
implicitly in the normal MAD/I call (e.g., F. (A,B,C)).

Part II -- User's Guide for MAD/I in MTS

178 Section 15: Assembler Coding Feature

2 declares PARS to be an array with components of ‘POINTER!
mode. The parameter list for the standard 0S type (I) S calling
sequence will be built in PARS.

3 declares RTNCODE to be of 'INTEGER' mode. The return code
from F will be stored here.

4 puts the addresses of A, B, and C into the parameter list.

S sets bit zero of the address of C in the parameter 1list to
one, to conform to the standard 0S conventions. The parameter
list is now complete.

6 begins the 'ENTER ASSEMBLER CODE' statement.

7 reserves general registers 0, 1, 2, 3, 4, 14, and 15 which are
used in a standard calling sequence and in saving and restoring
the stack status,

8 loads the address of the stack information into general
register 4. This is the first of the four instructions

necessary to increment the stack information to conform to MALD/I
stack conventions.

9 computes the current end of the stack.

10 saves the current two words of stack information in general
registers 2 and 3.

11 stores the tvwo words of new stack information at the address
obtained in line 8.

12 loads the address of the parameter list into general register
1, to confora to standard calling sequence conventions.

13 loads the address of F into general register 15, to conform
to standard calling sequence conventions.

14 loads the return address into general register 14 and
branches to the entry point of F, according to standard calling
sequence conventions.

15 restores the two words of stack information saved at line 10.
This is the only instruction needed to decrement the stack.

16 stores the return code left by F from deneral register 15
into the variable RTNCCDE.

17 stores the floating-point result returned by F from floating-
point register 0 into the variable RESULT.

18 terminates the 'ENTER ASSEMBLER CODE! statement.

Part Il -- User's Guide for MAD/I in MTS

L

e

-

e

<+
-e

Section 15: Assembler Coding Feature 179

15.3.2 Generating a Standard OS_Type_ (I) R Call

The standard 0S type (I) R call passes parameter values in
the general registers rather than through a parameter list.
This type of call cannot be directly generated by any higher
level 1language, and vyet it is useful because many MIS systen
subroutines follow this calling convention. This example calls
the MTS system subroutine GETFD, which acquires a file or device
given the address of its EBCDIC name in deneral register one,
and returns the address of a control block called a FDUB in
general register zero. This address can be used in further 1I/0
operations on the file or device. 1In this example, the EBCDIC
name is assumed to be the value of the variable NAME and the
FDUB address 1is stored in the variable FDUB. Note that the
stack information is not incremented. This is not necessary
because GETFD will not call any MAD/I procedure.

'DECLARE' GETFL 'EXTERNAL' 'ENTRY POINT';
YDECLARE' FDUB 'INTEGER';
'DECLARE' RTNCODE 'INTEGER';
YDECLARE' NAME °'CHARACTER®' (80)
"ENTER ASSEMELER CODE';
YRESERVE' 0,1,14,15;
LA 1,NAME;
LA 15,GETFD;
BALR 14,15;
ST 15,RTNCODE;
ST 0,FDUB;

WCONATNEWN 2

- b D
N - O

YEND';

1 declares GETFD to be 'EXTERNAL' 'ENTRY POINT'. This is done
implicitly in the normal MAD/I call (e.g., GETFD. (NAME)).

2 declares FDUB to be of 'INTEGER' mode. It actually does not
matter what mode it is, so long as it has length 4 and alignment
4.

3 declares RTNCODE to be of 'INTEGER' mode. The return code
from GETFD will be stored here.

4 declares NAME to be of 'CHARACTER' (80) mode. The name of the
file or device followed by at least one blank is assumed to be
here.

5 begins the 'ENTER ASSEMBLER CODE' statement.

6 reserves general registers 0, 1, 14, and 15 which are used in
the calling sequence.

7 loads the address of the EBCDIC name into general register 1.

8 loads the address of the entry point to GETFD into general

Part II -- User's Guide for MAD/I in MTS

180 Section 15: Assembler Coding Feature

register 15.

9 loads the return address into general register 14 and branches
to the entry point of GETFD.

10 stores the return code left by GETFD from general register 15
into the variable RTNCODE.

11 stores the FDUB address returned by GETFD from general
register 0 into the wvariable FDUB.

12 terminates the 'ENTER ASSEMBLER CODE' statement.

15.3.3_Translating Lower-case Characters to Upper Case

The System/360 has a powerful instruction (translate)
useful for tramnslating from one character set encoding to
another. The desired translation is defined by a 256-kyte
translate table. MIS has several translate tables which carn be
referenced as external symbols to perform common translations.
One of these 1is CASECONV, which converts all lower-case
alphabetic characters to upper-case alphabetic characters. The
following example converts any 1lower-case characters in the
variable STRING to. upper-case characters.

1 *DECLARE' CASECONV 'EXTERNAL' 'FIXED ARRAY' (256)
*CHARACTER' (1) ;
'*DECLARE' STRING *CHARACTER' (80)
'*ENTER ASSEMBLER CODE';
TR STRING (80) ,CASECONV;

N E w

*END';

1 declares CASECONV to be of ‘'EXTERNAL' storage class. The
remainder of the declaration is not important unless CASECONV is
referenced in normal MAD/I code.

2 declares STRING, the character string to be translated, tc be
of 'CHARACTER' (80) mode.

3 begins the 'ENTER ASSEMBLER CODE' statement.

4 translates the characters of STRING using the translate takle
CASECONV.

S terminates the 'ENTER ASSEMELER CODE' statement.

Part 1J - User's Gu.dc for MAD/I in MTS

[reee———"r'y e |

IPympro——y

.n

-y

-

oo

Section 15: Assembler Coding Feature 181

15.3.4__Converting an 'INTEGER' to Hexadecjmal Characters

This example translates the 'INTEGER' variable NUMBER into
a string of hexadecimal characters in the *CHARACTER!' (8)
variable HEXOUT.

'DECLARE' NUMBER 'INTEGER' 'LENGTH' (5) ;
'DECLARE!' HEXOUT *CHARACTER' (8) ;
'DECLARE' WORK 'CHARACTER®' {9)
'DECLARE' TAELE 'FIXED ARRAY' (256) 'CHARACTER' (1)
'*PRESET' TABLE (241) := wQ®, ®qu, w20 _ w3u_ agn u5w
new - m7n_ wgn_ ngu_ WAW_ uUBN_ uCh_ WLu_ NEN
nwpn.
'ENTER ASSEMBLER CODE';
UNPK WORK (9) , NUMBER (5) ;
TR WORK (8) ,TABLE;
MVC HEXOUT (8) ,WORK;

NEWN

-0 @ ~J O

0 'END';

1 declares NUMBER to be of 'INTEGER' 'LENGTH'(5) wmode. This
causes five bytes to be allocated to NUMBER, the first four
containing its value and the last being unused. This unused
byte 1is needed because of the idiosyncrasies of the UNPK
instruction with the low-order byte as pertains to this usage of
it.

2 declares HEXOUT to be of 'CHARACTER'(8) mode. The hexadecimal
character string result is left here.

3 declares WORK to be of 'CHARACTER' (9) mode. This is a wcrk
area used during the conversion.

4 declares TABLE to be a 'FIXED ARRAY' of ‘'CHARACTER' (1)
components. This is the translate table which is referenced at

line 8.

5 presets the translate table appropriately.

6 begins the 'ENTER ASSEMBLER CODE' statement.

7 unpacks the four bytes of the value of NUMBER into the first
eight bytes of WORK. The four-bit values 0...F are expanded
into the eight-bit values FO0...FP. The last byte of both NUMBER
and WORK are treated as the sign and low-order digit by the UNPK
instruction and are ignored by this algorithnm.

8 translates the eight bytes of the result from the values
FO...FF to the appropriate EBCDIC character representation.

9 moves this i:sult into the variable HEXOUT.

10 terminates the 'ENTER ASSEMBLER CODE' statement.

Part II -- User's Guide for MAD/I in MTS

182 Section 15: Assembler Coding Peature

15,3.5_ _Moving an_Agrbitrary Nupber of Charagigrs

This example moves p characters <€rom A(i)...A(i+n-1) to
B({)...B(f¢+n-1) , where A and B are both fixed arrays of
'CHARACTER' (1) elements. It assumes that 1 £ n € 256.

1 'DECLARE' (A,B) 'FIXED ARRAY'(32768) 'CHARACTER' (1);
2 ‘DECLARE' (I,J,N) "INTEGER';

3 ‘DECLARE' (PTA,PTB) 'POINTER';

4 PTA 3= .PT. A(I);

5 PTB := .PT. B(J);

6 'ENTER ASSEMBLER CODE!';

7 *RESERVE' RLEN, RA, RB;
8 *LABEL' SKIP, EXTHIS;
9 B SKIP;

10 :EXTHIS MVC 0(0,RB) ,0(RA) ;
11 :SKIP L RLEN,N;

12 L RA,PTA;

13 L RB,PTB;

14 BCTR RLEN,O;

15 EX RLEN,EXTHIS;
16 'END';

1 declares A and B to be of '"PIXED ARRAY® (32768) 'CHARACTER® (1)
mode.

2 declares I, J, and N to be of 'INTEGER' mode.
3 declares PTA and PTE to be of 'POINTER' mode.
4 puts the address of A(i) into PTA.

5 puts the address of EBE(j) into PTB.

6 begins the 'ENTER ASSEMBLER CODE' statement.

7 reserves three general-purpose registers named RLEN, RA, and
RB for use in this assembler code section.

8 declares two local labels, SKIP and EXTHIS.

9 branches to the next instruction to be executed. This
transfers around line 10 which vill be the subject instruction

of an execute instruction.

10 is the subject instruction of the execute instruction of line
15. It performs the actual move.

11 loads the nuabter of characters to be moved into register

tlLEN.

Fart IT -- 0seir's GuidJ2 foi MAD/I an NTS

Spunnt §

[

—t bt Gum Sud o

-e

Section 15: Assembler Coding Feature 183

12 loads the address of A(i) into register RA.
13 loads the address of B(j) into register RB.
14 subtracts one from the length, for the MVC instruction.
15 executes the MVC instruction to move the n characters.

16 terminates the 'ENTER ASSEMBLER CODE' statement.

15.3.6 __ Reading from SCARDPS into a ‘VARYING CHARACTER® Varjable

This example reads a variable-length input record via the
MTS subroutine SCARDS and then sets up a *'VARYING CHARACTER®
variable so that it is the contents of the record that has been
read. It assumes that the record read will have a length
greater than zero and less than 256.

1 *DECLARE®' STRING *VARYING CHARACTER® (255);
< *DECLARE® INAREA °*CHARACTER® (255) ;

3 'DECLARE* LEN °'INTEGER SHORT';

4 'DECLARE' LINNUMB *JINTEGER®;

5 SCARDS. (INAREA,LEN,0,LINNUMB) ;

6 'ENTER ASSEMBLER CODE*;

7 RESERVE® RLEN;

8 ‘COVER! STRING,INAREA;

9 *LABEL® SKIP,EXTHIS;

10 B SKIP;

11 :EXTHIS Mvce STRING+2 (0) , INAREA;
12 :SKIP LH RLE. ,LEN;

13 STH RLEN,STRING;

14 BCTR RLEN,O;

15 EX RLEN,EXTHIS;

16 'END*;

1 declares STRING to be of *VARYING CHARACTER® (255) mode.
2 declares INAREA to be of 'CHARACTER'® (255) node;

3 declares LEN to be of *INTEGER SHORT' mode.

U declares LINNUMB to be of *INTEGER' mode.

5 reads the next record into INAREA, putting its length into LEN
and its line nuaber into LINNUMB.

6 begins the 'ENTER ASSFMBLER CODE' statement.

7 reserves a general-purpose register and names it RLEN.

Part II -- User's Guide for MAD/I in NMTS

184 Section 15: Assembler Coding Peature

8 guarantees that the variables STRING andé INAREA have Lase-
register coverage throughout the C*ENTER ASSEMBLER CODE®
statement. This 1is necessary because these variables are
referenced by the MVC instruction of 1line 11 which is the
subject of the EX instruction of line 15.

9 declares two local labels, SKIP and EXTHIS.

10 branches to the next instruction to be executed. This
transfers around line 11 which is the subject instruction of the
execute instruction un line 15,

11 is the subject instruction of the execute instruction on line
15. It moves the contents of the string froe the input record
in the variable INAREA into the proper 1location within the
variable STRING.

12 loads the length of the string into RLEN.

13 stores the length of the string into the proper area 1in
STR ING.

14 subtracts one from the length, for the MVC instruction.
15 executes the MVC instruction to move the string into STRING.

16 terminates the 'ENTER ASSEMBLER CODE' statement.

Part 77 -- User's Saide for MAL/I in MTS

[e [o SRV]

-

e

e

Appendix A: Syntax Description Notation 185

APPENDICES

Appepdix MA: Syntax Notatjon

This notation is used to describe the syntax of MAL/I. It
does not describe the peaning of language elements but only the
syntax, e2.9., the order of elements, punctuation, and options
that @may occur. Note ¢that this syntax notation is used for
describing MAD/I but is not itself part of the MAD/I language.

The following describes the syntax notation:

Notation Vagrjable

A notation variable is a name for a construction in the
MAD/I lanquage. It may be formed by:

1) Llower-case letters and decimal digits and it nwmust Legin
with a letter.

2) A combination of lovwer- and upper-case letters and decimal
digits. There mnust be at least one portion in all lower-
case. Each portion is joined to the adjacent portions with

a hyphen.
Examples: exgression
identifier
procedure-call

VALUE-statement

All notation variables are defined either in terms of this
syntax notation or in terms of English. If a notation variable
is defined with this syntax notation, the variable occurs to the
left of the definition operator = and the definition occurs to
the right.

Notation Constant
A notation constant stands for the 1literal occurrence of
the characters composing the constant. A notation constant

consists of upper-case letters, digits, and special characters.
It zay not consist of any lower-case letters.

Example: *LENGTH'®

This denotes the literal occurrence ¢f the characters 'LENGTH' .

MAD/I Appendices

186 Appendix A: Syntax Description Notation

Concatenation

When tvwo or more notation elements are vwritten adjacent,
they denote an occurrence of the first element followed Ly an
occurrence of the second element, and so on. Blank sfgaces
tetveen notation elements have no significafice.

Examgple: YLENGTH' (integer)

This denotes an occurrence of the literal characters 'LENGTH®
followed by a literal left-parenthesis, followed Lty a
construction denoted by the notation variable "integer",
followed by a literal right-parenthésis.

Alternation |

The vertical bar | is used to indicate that a choice is
to be made.

Example:
storage-class = 'BASED' | YSTATIC' | 'AUTOMATIC®
This means that "storage-class" is defined to be either

'*BASED' or 'STATIC' or ‘'AUTOMATIC®. Alternation has lover
precedence than concatenation; e.g., x | Y z means x | (y z} .

Grouping { }

The braces {} may be used to denote grouping among
notation elements.

Example:
array = { 'FIXED ARRAY' | *'VARIABLE ARRAY' } dimension
This is equivalent to

array = 'FIXED APRAY' dimension | *VARIABLE ARRAY' dimension

Optiorality []

The scuare brackats [] are used to indicate that something
is optrona’. Wnatever 1i:c enclosed in square brackets either may
appear or «ay not apspear. In addition, the brackets imply a
aioupine of the no*aticnal elements enclosed within then.

Example: iower-bound = (-] integer

HAT /1 Appendices

4 _.

= :

Appendix A: Syntax Description Notation 187

This is equivalent to

lover-bound = - integer | integer

Repetition
The notation keyword ljist (which must always be underlined)

may be used to represent a sequence of items. It may be
followed by either one or two notation expressions. If it bhas
one argument, it stands for that argument occurring one or more
times in succession.
Ioec'

list x is equivalent to x | XX | XXX | ...
If list is used vith two arguments, it stands for a sequence of
one or more of the second argument separated by occurrences of
the first arqument. I.e.,

1ist x y 1is equivalent to y [list (x y}]
Example:

iist , label

is eguivalent to:

label | label,label | label,label,label | ...
The following precedence holds:

1ist x y is equivalent to { list x y)

and is not equivalent to (ljist x} y

dist x y 2z 1is equivalent to { list x y } 2

rather than Jlist x { yz} .

Qrder Independepce #
The # notation is used where order is not important, i.e.,
X #y 1is equivalent to x y | ¥y x

The # notation has higher precedence than either alternation or
concatenation; e.q.,

ab#c | d is egquivalent to a { b#c} | 4 .

MAD/I Appendices

188 Appendix B: Summary of Pre-defined Symbols

Appendix B:_ sSupmary of Pre-defined Symbols

Syasbol
Primed sysmbols

YACCESSIBLE!
'ALIGN'
VALLOCATE!
'ALTERNATE!
TAUTOMATIC®
'EASED?

YBEGIN'

'BIT!

'BLOCK'
'BOOLEAN!
YCHARACTER'
'CLOSE'
YCOMPONENT STKRUCTURE'
'COVER'

'DATA SET!
"DEALLOCATE"®
'DECLARE"!
'DECLARE CSECT!
'DECLARE DEFAULT!'
'DECLARE PSECT®
'DEFAULT!
YECHO!

YEND!

YEND
'END
YEND
'END
'END
YEND

FOR!

IF?

OF FILE?!

OF VOLUME!
PROCEDURE"
SUBSTITUTE!

YEND VALUE®' ,
'ENTER ASSEMBLER CODE'
'ENTER FACILITY'
'ENTRIES!

YFNTRY NAME'
YENTRY POINT'
'ERROR!

'ERROR EXIT'
YEXTFRNAL?Y
'FALSE"

'FILT NAMYE!
'FIXED ARRAY'
VELOATING!
'FLUSTTNG LONG!
*FLOATING SHORT!

DA
UPOR °

Abbreviation

*ACC!

*ALT!

*BOOL!
1ce

lcs!

'DCL!

! DCLD!

*EOF'
*EOV!

'ENDSUB!

IENQ
IEPI

'EXT!

lFAl
!Fl

'FLI
!FS'

HAD/1 Appendices

Sectiop(s)

wwnww
* o o o o o o
weoNn N

.

w

DN~
*
-

N aNEEWHEFROSE Wa W aNwed (W aVoaoodaoowoa88 8 am=W
[V]

W 2 o 0o 0o O O o o (Lo
N Nt adads o
-

o

.« % 6 s NI N
o
o o
[§, =y

o o
w N

(NNe o o o ¢ o 2 o ¢ o o ¢ ¢ o o o (Ne o

Ll
-—h

e o o o o

~N&EsENpNOE
o o
(8,0)

2.2.2 -

] Ow
-t %
[}
.
-

- e ek e W N) L W

-—ead wd N\) ad -
. L] e o @
WE W~

VWwuwwwWwuwwEsEohhwwova2aumounmooadanmnunntownuwnmnwOno awdhwwNnwwm Ww
-

-e

Appendix B: Summary of Pre-defined Symbols 189

'FONt VALUES!
'FORMAT®
'GLOBAL®

'Go TO'

*IF?

*INCLUDE"
YINTEGER?
"INTEGER LONG'
INTEGER SFORT
'LABEL"

*LAST LENGTH®
'LAST LINE'
YLENGTH?

'LINE"

'LIST"

*MAX LENGTH®
'NEW'

*NOT NEW'

*NULL C!

*NULL EN?

'NULL PT?

'NULL VvC*

"OPEN!

'OR ELSE'

'OR IF!

*PACKED'
'PCINTER'

'POP SUBSTITUTE®
'PRESET'

' PROCEDURE?
*READ®

"READ DATA'
"READ UNCONVERTED'
'REDIMENSION®
YRESERVE?
*RETURN?

RETURN TO
*SAVE CODE!
YSTATIC!

STRING DATA SET
'SUBSTITUTE"
ITOI

'TRANSFER POINT'
'TRUE"

'UNIT®

*VALUE®

"VARYING ARRAY'
'VARYING CHARACTER'
"WITH®

'WRITE®

'WRITE DATA'
'WRITE UNCONVERTEL*

MAD/I

III
1L
lIs'

'ELSE?
1pe
' PO

' PROC!

TYAY
'yC

Appendices

NN d WE® b owdowd

. L[] L] L[] L[] L] [] [] [] m. [] [] L L]] []

WWwWWwWwoOhohowohhwwWWwwoumUnwo W
L[]

VaaU OO WWO OO W
v W

LA S X L I T QR Y

.
Wa~JWwwe

oUW WUoOWLWWUMOAAWEWM

LIRS |
L]

- NN

- & L[] L

[« 3P
.
(Ve
.
&

-h

190 Appendix E: Summary of Pre-defined Symbols

<A
-ABS.
.ALLOC.
«AND.
«AS.
.A3STYPE.
«ASTYPEOF.
.CONCAT.
.CONV.
.ENCON.
«EQV.
.EV.
.EXOR.
.IND.

. LN.
.LS.
.LSA.

- N.

. NE.

- NEG.
.NOT.
.OR.

. PT.
«PTCON.
«REM.
«RS.

. RSA.

« TAG.

. THEN.
V.

o o o o o o o
o o o o
Wb = &
o

L]

E WM EFfdadaa2WENEEFEdaaWEWaOVD
(=]

0- 0 0 o o o 0o 0 o o
e o o e o o o o o o
oo

4.2.1

ErsrsEersBEERBNEESEEFEEFFEFLLWWESES
e 0 0 0 o o o o 0. 0
o o o o 0.9 o o
[= X =) -

MAD/I Appendices

Appendix B: Summary of Pre-defined Symbols

Special symbols (see also Section 2.1.7)
Symbol Name Section

Punctuation symbols:

e v W

E W

Operators:

em— e mea\“//“\f'vzxu *#N\ * 1+

Also, the tvo-character sequence

left-parenthesis
right-parenthesis
comma

semicolon

colon

ellipsis
pound-sign

2

' 3
6.7
5.7

EWwN
L]

N =N
L]
AN =

(see also Section 4.3 for precedences)

plus

minus

asterisk

slash

double-asterisk
equal-sign

less-than
greater-than
not-equal
less-than-or~equal
greater-than-or-equal
at-sign

dollar-sign

dot, period

not-sign

ampersand

vertical bar
double-bar
colon-equals, assignment

<<

coament delimiter.

L]
WU WWWUIRNARWUONNNDNNON o oad cd

ErsesbsporWEEsEESrFEEEEECSE
.
LSS ICN SIS SHSN. I CN S} SN NN SN U XN XY SN XY XY

-
W w

L]
~) (e]

L]
L[]
«*
[]
[]
-b

is reserved for use as

MAD/I Appendices

191

192 Arpendix C: Current Restrictions & Possible Extensions

Appendix_C: _current Restrictions & Possible Extensions

Implementation Restrictions

The following are current implementation restrictions.
They are coded by section number within the manual.

Section Restriction

2.1.4.3 Pointer-constant symbols are not yet supported. The
same effect can be obtained through the
.PTCON. operator. See Section 4.2.10.

2.1.4.4 Entry-name-constant symbols are not yet supported.
The same effect can be obtained through the
.ENCON. operator. See Section 4.2.10.

2.2.5 The "$" operator is not yet supported. Components can
be accessed by using the component name as if it were
a subscript; e.g., COMPLXN(@REAL) instead of COMPLXN §

DREAL) .

3.1.2.2 See the restriction under Section 2.2.5 concerning the
wg» operator.

3.4.2 Automatic storage class is pot yet supported.
4.2.1 The operator-mode combinations vwhich involve *BIT!

mode as both the first and second operand modes are
not yet implemented.

4.2.4 The bit-string operations are not yet defined for
'BIT' mode.
4.2.5 The concatenation operation currently is not

implemented for *VARYING CHARACTER®' mode.
4.2.6 The "$" operator is not yet implemented.

4.2.6 Substring selection is not yet implemented for
'VARYING CHARACTER' mode.

4.2.7 The phrase Keywords 'ERROR EXIT* and 'SAVE CODE' are
not yet 1nplemented. Instead, the variable RRTNCCDE
contains the value of the last return code from the
last procedure called. %RTNCODE should be
interrogeted 15 soon as possible, since compiler-
gencerated subroutine calis (for 1I/0, subscription,
etc.) also molify its value.

d4AL /T Appendaices

6.7.2
6.7.3

6.9.1

6.9.2

6.9.3

6.9.4

Appendix C: Current Restrictions & Possible Extensions 193

The *FOR' statement cannot appear as an embedded
statement in the prefix part of another ‘FCR!
statement or 'FOR VALUES' statement.

The prefix 'VALUE' V := E is not yet implemented. The
same effect can be obtained by: *VALUE' V; V = E ...

The declaration of a formal parameter with an "array-
suffix® in which the "bounds"™ entries are the special
syabol # is not yet implemented.

The *REDIMENSION' statement is not yet implemented.

The elements of an array which are referenced in a
blcck-element must have a length equal +to the "aligned
length" of an array component. See Section 3.1.2.1
for a discussion of aligned length. Hence given the
following declarations, only A can be referenced in a
block-element:

DECLARE A 'FA'(10,15) *It,
B 'FA' (10,15) *ALIGN'(8) 'I',
C *FA' (10,15) 'LENGTH' (7) 'T°

Array expressions are not yet supported in data-lists.

Component-structure expressions are not yet supported
in data-lists.

The *OPEN' and 'CLOSE' statements are not yet
implemented.

The data'directed input/output statements (*READ CATA!
and *WRITE DATA') are not yet implemented.

List-directed input/output is not yet impiewmented.

Only a subset of format-directed input/output is
currently irsplemented. The I/O-spec-list must always
be specified. Its elements naust be specified in
positional fora. The first element is taken as the
format and is wsandatory. The second element is
optional and is interpreted in the following vays:

(1) If it i. 2hsent, the logical I/0 wunit SCARDS is
used for input; SPRINT for output.
(2) If the first byte is zero, it is taken as an

integer unit specification; that is, a
specification of logical I/O unit 0 through 9 or
a FDUB.

(3) In all other cases, it is taken as an FDname, and
must be terainated by a blank character.

MAD/I Appendices

194 Appendix C: Current Restrictions & Possible Extensions

6.9.5
7.1

15. 1.2

No other input/output specifications are alloved.
Unconverted input/output is not yet implemented.

The outermost block must be a procedure block;
programs +vwritten as compound-statemsent blocks may not
compile.

Identifiers used as operands as discussed in (5) aust
belong to the outermost block of the progras.

Possible Extensjons

The tolloving are extensions to the WMAD/I 1language and
MAD/I compiler which are anticipated as future developaents.

Segction
3.1.1.8

4.2.10

6.7.1

Expected Extensjons

The maximum number of characters allowved in
'CHARACTER' mode values is expected to be increased to
32767. Lengths greater than 256 vill cause
subroutines to be called when used as operands to most
operations.

Operations comparable to the PL/I built-in functions
INDEX, TRANSLATE, and VERIPY are conteaplated.

Biock-elements are expected to be defined across
components within all the structured modes, not just
the array modes.

Recursive procedures are contemplated; such procedures

vould require the declaration of a ‘RECURSIVE'
attribute.

MAD/I Appendices

-y For ey

r“—“

sy

